Journal Article FZJ-2019-05067

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Polymer electrolyte fuel Cell Modeling - Comparison of Two Models with Different Levels of Complexity

 ;  ;  ;  ;

2020
Elsevier New York, NY [u.a.]

International journal of hydrogen energy 45(38), 19761 - 19777 () [10.1016/j.ijhydene.2020.05.060]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The modeling of fuel cells requires the coupling of fluid transport with electro-chemical reactions. There are two approaches commonly used. Firstly, the electrodes can be treated as two planes, where the potential gradient can be considered as being locally one-dimensional. In this case a two dimensional current density distribution is obtained. Secondly, the two electrode layers can be spatially resolved and the protonic and electronic potentials obtained by solving a pair of coupled Poisson equations. The latter approach requires much higher computational resources, because a higher spatial resolution is required and a large set of model parameters is required. On the other hand, much more detailed local information can be obtained by this method. The motivation for this study was to compare the results quantitively with detailed experimental data for a high temperature polymer electrolyte fuel cell with a geometric area of 200 cm2. Both model approaches show very good agreement with measured local current density distributions. The second model is able to provide a deeper insight into the current density variation through the membrane and catalyst layers and reveals points with local extremes. The present results are specific for high temperature polymer electrolyte fuel cells but the conclusions may readily be applied to the modeling of other high temperature fuel cell types.

Classification:

Contributing Institute(s):
  1. Elektrochemische Verfahrenstechnik (IEK-14)
Research Program(s):
  1. 135 - Fuel Cells (POF3-135) (POF3-135)

Appears in the scientific report 2021
Database coverage:
Medline ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-4
Workflow collections > Public records
IEK > IEK-14
Publications database
Open Access

 Record created 2019-10-15, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)