001     865751
005     20240712113250.0
024 7 _ |a 10.1016/j.ijhydene.2020.05.060
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a 2128/27276
|2 Handle
024 7 _ |a WOS:000552053500085
|2 WOS
037 _ _ |a FZJ-2019-05067
082 _ _ |a 620
100 1 _ |a Zhang, Shidong
|0 P:(DE-Juel1)168221
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Polymer electrolyte fuel Cell Modeling - Comparison of Two Models with Different Levels of Complexity
260 _ _ |a New York, NY [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1614612390_8401
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The modeling of fuel cells requires the coupling of fluid transport with electro-chemical reactions. There are two approaches commonly used. Firstly, the electrodes can be treated as two planes, where the potential gradient can be considered as being locally one-dimensional. In this case a two dimensional current density distribution is obtained. Secondly, the two electrode layers can be spatially resolved and the protonic and electronic potentials obtained by solving a pair of coupled Poisson equations. The latter approach requires much higher computational resources, because a higher spatial resolution is required and a large set of model parameters is required. On the other hand, much more detailed local information can be obtained by this method. The motivation for this study was to compare the results quantitively with detailed experimental data for a high temperature polymer electrolyte fuel cell with a geometric area of 200 cm2. Both model approaches show very good agreement with measured local current density distributions. The second model is able to provide a deeper insight into the current density variation through the membrane and catalyst layers and reveals points with local extremes. The present results are specific for high temperature polymer electrolyte fuel cells but the conclusions may readily be applied to the modeling of other high temperature fuel cell types.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Beale, Steven
|0 P:(DE-Juel1)157835
|b 1
|u fzj
700 1 _ |a Reimer, Uwe
|0 P:(DE-Juel1)6697
|b 2
|u fzj
700 1 _ |a Andersson, Martin
|0 P:(DE-Juel1)168242
|b 3
|u fzj
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 4
|u fzj
773 _ _ |a 10.1016/j.ijhydene.2020.05.060
|g Vol. 45, no. 38, p. 19761 - 19777
|0 PERI:(DE-600)1484487-4
|n 38
|p 19761 - 19777
|t International journal of hydrogen energy
|v 45
|y 2020
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/865751/files/Zhang_Shidong.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:865751
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168221
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157835
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)6697
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)168242
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129883
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)129883
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Fuel Cells
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-32
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2018
|d 2020-08-32
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-32
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-32
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-32
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21