Contribution to a conference proceedings FZJ-2019-05146

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Rank Selection in Non-negative Matrix Factorization: systematic comparison and a new MAD metric

 ;  ;  ;

2019
IEEE

2019 International Joint Conference on Neural Networks (IJCNN), BudapestBudapest, Hungary, 14 Jul 2019 - 19 Jul 20192019-07-142019-07-19 IEEE 8 pp. () [10.1109/IJCNN.2019.8852146]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Non-Negative Matrix Factorization (NMF) is apowerful dimensionality reduction and factorization method thatprovides a part-based representation of the data. In the absence ofa priori knowledge about the latent dimensionality of the data, itis necessary to select a rank of the reduced representation. Severalrank selection methods have been proposed, but no consensusexists on when a method is suitable to use. In this work, we proposea new metric for rank selection based on imputation crossvalidation,and we systematically compare it against six othermetrics while assessing the effects of data properties. Usingsynthetic datasets with different properties, our work criticallyevidences that most methods fail to identify the true rank. Weshow that properties of the data heavily impact the ability ofdifferent methods. Imputation-based metrics, including our newMADimput, provided the best accuracy irrespective of the datatype, but no solution worked perfectly in all circumstances. Oneshould therefore carefully assess characteristics of their dataset inorder to identify the most suitable metric for rank selection.


Note: This study was partly supported by the Helmholtz Portfolio Theme"Supercomputing and Modeling for the Human Brain" and the EuropeanUnion’s Horizon 2020 Research and Innovation Programme under GrantAgreement No. 785907 (HBP SGA2).

Contributing Institute(s):
  1. Gehirn & Verhalten (INM-7)
Research Program(s):
  1. 574 - Theory, modelling and simulation (POF3-574) (POF3-574)
  2. HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) (785907)

Appears in the scientific report 2019
Click to display QR Code for this record

The record appears in these collections:
Document types > Events > Contributions to a conference proceedings
Institute Collections > INM > INM-7
Workflow collections > Public records
Publications database

 Record created 2019-10-21, last modified 2021-01-30


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)