000865930 001__ 865930
000865930 005__ 20240711101538.0
000865930 0247_ $$2doi$$a10.3390/en12204006
000865930 0247_ $$2Handle$$a2128/23249
000865930 0247_ $$2WOS$$aWOS:000498391700201
000865930 037__ $$aFZJ-2019-05207
000865930 082__ $$a620
000865930 1001_ $$0P:(DE-Juel1)169368$$aLopion, Peter$$b0$$eCorresponding author$$ufzj
000865930 245__ $$aCost Uncertainties in Energy System Optimization Models: A Quadratic Programming Approach for Avoiding Penny Switching Effects
000865930 260__ $$aBasel$$bMDPI$$c2019
000865930 3367_ $$2DRIVER$$aarticle
000865930 3367_ $$2DataCite$$aOutput Types/Journal article
000865930 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604413811_633
000865930 3367_ $$2BibTeX$$aARTICLE
000865930 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865930 3367_ $$00$$2EndNote$$aJournal Article
000865930 520__ $$aDesigning the future energy supply in accordance with ambitious climate change mitigation goals is a challenging issue. Common tools for planning and calculating future investments in renewable and sustainable technologies are often linear energy system models based on cost optimization. However, input data and the underlying assumptions of future developments are subject to uncertainties that negatively affect the robustness of results. This paper introduces a quadratic programming approach to modifying linear, bottom-up energy system optimization models to take cost uncertainties into account. This is accomplished by implementing specific investment costs as a function of the installed capacity of each technology. In contrast to established approaches such as stochastic programming or Monte Carlo simulation, the computation time of the quadratic programming approach is only slightly higher than that of linear programming. The model’s outcomes were found to show a wider range as well as a more robust allocation of the considered technologies than the linear model equivalent.
000865930 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000865930 536__ $$0G:(DE-HGF)ES2050$$aES2050 - Energie Sytem 2050 (ES2050)$$cES2050$$x1
000865930 588__ $$aDataset connected to CrossRef
000865930 7001_ $$0P:(DE-Juel1)130471$$aMarkewitz, Peter$$b1$$ufzj
000865930 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b2$$ufzj
000865930 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b3$$ufzj
000865930 773__ $$0PERI:(DE-600)2437446-5$$a10.3390/en12204006$$gVol. 12, no. 20, p. 4006 -$$n20$$p4006 -$$tEnergies$$v12$$x1996-1073$$y2019
000865930 8564_ $$uhttps://juser.fz-juelich.de/record/865930/files/Invoice_MDPI_energies.pdf
000865930 8564_ $$uhttps://juser.fz-juelich.de/record/865930/files/Invoice_MDPI_energies.pdf?subformat=pdfa$$xpdfa
000865930 8564_ $$uhttps://juser.fz-juelich.de/record/865930/files/energies-12-04006-v2.pdf$$yOpenAccess
000865930 8564_ $$uhttps://juser.fz-juelich.de/record/865930/files/energies-12-04006-v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865930 8767_ $$8energies-569845$$92019-10-19$$d2019-10-23$$eAPC$$jZahlung erfolgt
000865930 909CO $$ooai:juser.fz-juelich.de:865930$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000865930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169368$$aForschungszentrum Jülich$$b0$$kFZJ
000865930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130471$$aForschungszentrum Jülich$$b1$$kFZJ
000865930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b2$$kFZJ
000865930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b3$$kFZJ
000865930 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000865930 9141_ $$y2019
000865930 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865930 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000865930 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000865930 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865930 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGIES : 2017
000865930 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000865930 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000865930 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865930 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865930 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865930 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865930 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865930 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865930 920__ $$lyes
000865930 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000865930 9801_ $$aAPC
000865930 9801_ $$aFullTexts
000865930 980__ $$ajournal
000865930 980__ $$aVDB
000865930 980__ $$aI:(DE-Juel1)IEK-3-20101013
000865930 980__ $$aAPC
000865930 980__ $$aUNRESTRICTED
000865930 981__ $$aI:(DE-Juel1)ICE-2-20101013