001     866009
005     20220930130221.0
024 7 _ |a 10.1038/s41565-019-0506-y
|2 doi
024 7 _ |a 1748-3387
|2 ISSN
024 7 _ |a 1748-3395
|2 ISSN
024 7 _ |a 2128/23180
|2 Handle
024 7 _ |a altmetric:64278338
|2 altmetric
024 7 _ |a pmid:31358942
|2 pmid
024 7 _ |a WOS:000484601200006
|2 WOS
037 _ _ |a FZJ-2019-05269
082 _ _ |a 600
100 1 _ |a Schüffelgen, Peter
|0 P:(DE-Juel1)165984
|b 0
|e Corresponding author
245 _ _ |a Selective area growth and stencil lithography for in situ fabricated quantum devices
260 _ _ |a London [u.a.]
|c 2019
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1572506748_28321
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The interplay of Dirac physics and induced superconductivity at the interface of a 3D topological insulator (TI) with an s-wave superconductor (S) provides a new platform for topologically protected quantum computation based on elusive Majorana modes. To employ such S–TI hybrid devices in future topological quantum computation architectures, a process is required that allows for device fabrication under ultrahigh vacuum conditions. Here, we report on the selective area growth of (Bi,Sb)2Te3 TI thin films and stencil lithography of superconductive Nb for a full in situ fabrication of S–TI hybrid devices via molecular-beam epitaxy. A dielectric capping layer was deposited as a final step to protect the delicate surfaces of the S–TI hybrids at ambient conditions. Transport experiments in as-prepared Josephson junctions show highly transparent S–TI interfaces and a missing first Shapiro step, which indicates the presence of Majorana bound states. To move from single junctions towards complex circuitry for future topological quantum computation architectures, we monolithically integrated two aligned hardmasks to the substrate prior to growth. The presented process provides new possibilities to deliberately combine delicate quantum materials in situ at the nanoscale.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rosenbach, Daniel
|0 P:(DE-Juel1)167347
|b 1
|u fzj
700 1 _ |a Li, Chuan
|0 P:(DE-Juel1)159111
|b 2
700 1 _ |a Schmitt, Tobias W.
|0 P:(DE-Juel1)171406
|b 3
|u fzj
700 1 _ |a Schleenvoigt, Michael
|0 P:(DE-Juel1)171405
|b 4
|u fzj
700 1 _ |a Jalil, Abdur R.
|0 P:(DE-Juel1)171826
|b 5
|u fzj
700 1 _ |a Schmitt, Sarah
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kölzer, Jonas
|0 P:(DE-Juel1)172619
|b 7
|u fzj
700 1 _ |a Wang, Meng
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Bennemann, Benjamin
|0 P:(DE-Juel1)161192
|b 9
|u fzj
700 1 _ |a Parlak, Umut
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Kibkalo, Lidia
|0 P:(DE-Juel1)169107
|b 11
|u fzj
700 1 _ |a Trellenkamp, Stefan
|0 P:(DE-Juel1)128856
|b 12
|u fzj
700 1 _ |a Grap, Thomas
|0 P:(DE-Juel1)173740
|b 13
|u fzj
700 1 _ |a Meertens, Doris
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Luysberg, Martina
|0 P:(DE-Juel1)130811
|b 15
700 1 _ |a Mussler, Gregor
|0 P:(DE-Juel1)128617
|b 16
|u fzj
700 1 _ |a Berenschot, Erwin
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Tas, Niels
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Golubov, Alexander A.
|0 0000-0001-5085-5195
|b 19
700 1 _ |a Brinkman, Alexander
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Schäpers, Thomas
|0 P:(DE-Juel1)128634
|b 21
|u fzj
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 22
|u fzj
773 _ _ |a 10.1038/s41565-019-0506-y
|g Vol. 14, no. 9, p. 825 - 831
|0 PERI:(DE-600)2254964-X
|n 9
|p 825 - 831
|t Nature nanotechnology
|v 14
|y 2019
|x 1748-3395
856 4 _ |u https://juser.fz-juelich.de/record/866009/files/20191025125625501.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/866009/files/20191025125625501.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/866009/files/s41565-019-0506-y.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/866009/files/s41565-019-0506-y.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866009
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165984
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171406
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171405
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)171826
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172619
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)161192
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)169107
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)128856
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)173740
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)130811
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 21
|6 P:(DE-Juel1)128634
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)125588
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT NANOTECHNOL : 2017
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b NAT NANOTECHNOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)HNF-20170116
|k HNF
|l Helmholtz - Nanofacility
|x 2
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 3
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)HNF-20170116
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21