001     866010
005     20240619083556.0
024 7 _ |a 10.1103/PhysRevE.100.052606
|2 doi
024 7 _ |a 1063-651X
|2 ISSN
024 7 _ |a 1095-3787
|2 ISSN
024 7 _ |a 1538-4519
|2 ISSN
024 7 _ |a 1539-3755
|2 ISSN
024 7 _ |a 1550-2376
|2 ISSN
024 7 _ |a 2470-0045
|2 ISSN
024 7 _ |a 2470-0053
|2 ISSN
024 7 _ |a 2128/23515
|2 Handle
024 7 _ |a pmid:31869945
|2 pmid
024 7 _ |a WOS:000496581400007
|2 WOS
037 _ _ |a FZJ-2019-05270
082 _ _ |a 530
100 1 _ |a Kang, Kyongok
|0 P:(DE-Juel1)130749
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Coupling of long-wavelength density fluctuations to orientations in cellulose nanocrystal suspensions under external fields
260 _ _ |a Woodbury, NY
|c 2019
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1575361158_13643
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Motivated by the development of cellulose-based functional materials, we investigate the microscopic dynamics of suspensions of cellulose nanocrystals (CNC) at different ionic strengths, both in the absence and presence of AC electric fields, and for various temperatures. A concentration of 5wt% of the CNCs is chosen, for which the dispersions are in the full chiral-nematic state at low ionic strengths. Dynamic light scattering is used to characterize the wavevector-dependent decay rates of number-density fluctuations. Contrary to an isotropic suspension, the dispersion relations (the wavevector dependence of the correlation-function decay rates) as obtained by means of depolarized light scattering are found to exhibit anomalous behaviour. The dispersion relations, both without and with an external field, exhibit minima at small wavevectors, which is attributed to coupling of translational motion to the orientation of the CNCs, shown in the chiral-nematic state. The location of the minima is found to weakly depend on ionic strength, and shifts significantly towards larger wavevectors upon applying an external electric field for sufficiently high ionic strengths. Finally, preliminary results are presented for smaller length-scale density fluctuations (at larger wavevectors) as a function of temperature, revealing the anisotropic mobilities in the chiral-nematic state of CNCs.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bertsch, Pascal
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Fischer, Peter
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1103/PhysRevE.100.052606
|g Vol. 100, no. 5, p. 052606
|0 PERI:(DE-600)2844562-4
|n 5
|p 052606
|t Physical review / E
|v 100
|y 2019
|x 1063-651X
856 4 _ |u https://juser.fz-juelich.de/record/866010/files/INV_19_OCT_002794.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/866010/files/INV_19_OCT_002794.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/866010/files/PhysRevE.100.052606.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/866010/files/PhysRevE.100.052606.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866010
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130749
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV E : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-3-20110106
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21