000866102 001__ 866102
000866102 005__ 20230505130535.0
000866102 0247_ $$2doi$$a10.1063/1.5125211
000866102 0247_ $$2Handle$$a2128/23214
000866102 0247_ $$2WOS$$aWOS:000509790200030
000866102 037__ $$aFZJ-2019-05321
000866102 082__ $$a600
000866102 1001_ $$0P:(DE-Juel1)165926$$aHensling, Felix V. E.$$b0$$eCorresponding author
000866102 245__ $$aEngineering antiphase boundaries in epitaxial SrTiO 3 to achieve forming free memristive devices
000866102 260__ $$aMelville, NY$$bAIP Publ.$$c2019
000866102 3367_ $$2DRIVER$$aarticle
000866102 3367_ $$2DataCite$$aOutput Types/Journal article
000866102 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596546672_5108
000866102 3367_ $$2BibTeX$$aARTICLE
000866102 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866102 3367_ $$00$$2EndNote$$aJournal Article
000866102 520__ $$aWe here present a method to engineer Ruddlesden-Popper-type antiphase boundaries in stoichiometric homoepitaxial SrTiO3 thin films. This is achieved by using a substrate with an intentionally high miscut, which stabilizes the growth of additional SrO at the bottom interface. We prove the success of this strategy utilizing transmission electron microscopy. We find that these antiphase boundaries significantly influence the resistive switching properties. In particular, devices based on SrTiO3 thin films with intentionally induced antiphase boundaries do not require a forming step, which is ascribed to the existence of preformed filaments.
000866102 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000866102 536__ $$0G:(GEPRIS)167917811$$aDFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811)$$c167917811$$x1
000866102 588__ $$aDataset connected to CrossRef
000866102 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b1
000866102 7001_ $$0P:(DE-Juel1)157925$$aRaab, Nicolas$$b2
000866102 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b3
000866102 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b4
000866102 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b5
000866102 773__ $$0PERI:(DE-600)2722985-3$$a10.1063/1.5125211$$gVol. 7, no. 10, p. 101127 -$$n10$$p101127 -$$tAPL materials$$v7$$x2166-532X$$y2019
000866102 8564_ $$uhttps://juser.fz-juelich.de/record/866102/files/1.5125211.pdf$$yOpenAccess
000866102 8564_ $$uhttps://juser.fz-juelich.de/record/866102/files/1.5125211.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866102 909CO $$ooai:juser.fz-juelich.de:866102$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165926$$aForschungszentrum Jülich$$b0$$kFZJ
000866102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b1$$kFZJ
000866102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b3$$kFZJ
000866102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b4$$kFZJ
000866102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b5$$kFZJ
000866102 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000866102 9141_ $$y2019
000866102 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866102 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866102 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000866102 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPL MATER : 2017
000866102 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000866102 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000866102 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866102 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866102 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866102 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866102 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000866102 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866102 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866102 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866102 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000866102 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000866102 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x2
000866102 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x3
000866102 980__ $$ajournal
000866102 980__ $$aVDB
000866102 980__ $$aI:(DE-Juel1)PGI-7-20110106
000866102 980__ $$aI:(DE-82)080009_20140620
000866102 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000866102 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000866102 980__ $$aUNRESTRICTED
000866102 9801_ $$aFullTexts