| Hauptseite > Publikationsdatenbank > Engineering antiphase boundaries in epitaxial SrTiO 3 to achieve forming free memristive devices > print |
| 001 | 866102 | ||
| 005 | 20230505130535.0 | ||
| 024 | 7 | _ | |a 10.1063/1.5125211 |2 doi |
| 024 | 7 | _ | |a 2128/23214 |2 Handle |
| 024 | 7 | _ | |a WOS:000509790200030 |2 WOS |
| 037 | _ | _ | |a FZJ-2019-05321 |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Hensling, Felix V. E. |0 P:(DE-Juel1)165926 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Engineering antiphase boundaries in epitaxial SrTiO 3 to achieve forming free memristive devices |
| 260 | _ | _ | |a Melville, NY |c 2019 |b AIP Publ. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1596546672_5108 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a We here present a method to engineer Ruddlesden-Popper-type antiphase boundaries in stoichiometric homoepitaxial SrTiO3 thin films. This is achieved by using a substrate with an intentionally high miscut, which stabilizes the growth of additional SrO at the bottom interface. We prove the success of this strategy utilizing transmission electron microscopy. We find that these antiphase boundaries significantly influence the resistive switching properties. In particular, devices based on SrTiO3 thin films with intentionally induced antiphase boundaries do not require a forming step, which is ascribed to the existence of preformed filaments. |
| 536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |x 0 |f POF III |
| 536 | _ | _ | |a DFG project 167917811 - SFB 917: Resistiv schaltende Chalkogenide für zukünftige Elektronikanwendungen: Struktur, Kinetik und Bauelementskalierung "Nanoswitches" (167917811) |0 G:(GEPRIS)167917811 |c 167917811 |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Du, Hongchu |0 P:(DE-Juel1)145710 |b 1 |
| 700 | 1 | _ | |a Raab, Nicolas |0 P:(DE-Juel1)157925 |b 2 |
| 700 | 1 | _ | |a Jia, Chun-Lin |0 P:(DE-Juel1)130736 |b 3 |
| 700 | 1 | _ | |a Mayer, Joachim |0 P:(DE-Juel1)130824 |b 4 |
| 700 | 1 | _ | |a Dittmann, Regina |0 P:(DE-Juel1)130620 |b 5 |
| 773 | _ | _ | |a 10.1063/1.5125211 |g Vol. 7, no. 10, p. 101127 - |0 PERI:(DE-600)2722985-3 |n 10 |p 101127 - |t APL materials |v 7 |y 2019 |x 2166-532X |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/866102/files/1.5125211.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/866102/files/1.5125211.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:866102 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)165926 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)145710 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130736 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)130824 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130620 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2019 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APL MATER : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
| 920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)ER-C-2-20170209 |k ER-C-2 |l Materialwissenschaft u. Werkstofftechnik |x 2 |
| 920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 3 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
| 980 | _ | _ | |a I:(DE-82)080009_20140620 |
| 980 | _ | _ | |a I:(DE-Juel1)ER-C-2-20170209 |
| 980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|