001     866112
005     20240712112907.0
024 7 _ |a 10.1109/JSYST.2019.2939500
|2 doi
024 7 _ |a WOS:000503182300064
|2 WOS
037 _ _ |a FZJ-2019-05331
082 _ _ |a 004
100 1 _ |a Ferdowsi, Mohsen
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Measurement Selection for Data-Driven Monitoring of Distribution Systems
260 _ _ |a New York, NY
|c 2019
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1576838899_4186
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This article investigates the problem of measurement selection for data-driven monitoring approaches. Several approaches to input variable selection (IVS) are analyzed, and a general procedure for finding the optimal order for the selection of candidate measurements is presented. The method is based on the extensions of partial correlation and minimal redundancy maximum relevance criteria to support IVS problems involving multiple outputs. This method can be used to find the minimal set of measurements for achieving a target estimation accuracy. The results demonstrate the advantages and limits of the introduced method in comparison to the other approaches discussed in this article.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Benigni, Andrea
|0 P:(DE-Juel1)179029
|b 1
|e Corresponding author
700 1 _ |a Monti, Antonello
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ponci, Ferdinanda
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1109/JSYST.2019.2939500
|g p. 1 - 9
|0 PERI:(DE-600)2260091-7
|n 4
|p 4260 - 4268
|t IEEE systems journal
|v 13
|y 2019
|x 1932-8184
856 4 _ |u https://juser.fz-juelich.de/record/866112/files/08844970.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/866112/files/Confirmation%2010000088452.pdf
856 4 _ |u https://juser.fz-juelich.de/record/866112/files/08844970.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/866112/files/Confirmation%2010000088452.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:866112
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179029
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE SYST J : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a APC
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21