000866200 001__ 866200
000866200 005__ 20240712113116.0
000866200 0247_ $$2doi$$a10.1039/C9CP05334D
000866200 0247_ $$2ISSN$$a1463-9076
000866200 0247_ $$2ISSN$$a1463-9084
000866200 0247_ $$2Handle$$a2128/24269
000866200 0247_ $$2altmetric$$aaltmetric:70866627
000866200 0247_ $$2pmid$$apmid:31746873
000866200 0247_ $$2WOS$$aWOS:000501356000013
000866200 037__ $$aFZJ-2019-05371
000866200 082__ $$a540
000866200 1001_ $$00000-0003-0193-1088$$aKüpers, Verena$$b0
000866200 245__ $$aIn situ 7 Li-NMR analysis of lithium metal surface deposits with varying electrolyte compositions and concentrations
000866200 260__ $$aCambridge$$bRSC Publ.$$c2019
000866200 3367_ $$2DRIVER$$aarticle
000866200 3367_ $$2DataCite$$aOutput Types/Journal article
000866200 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580989798_22023
000866200 3367_ $$2BibTeX$$aARTICLE
000866200 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866200 3367_ $$00$$2EndNote$$aJournal Article
000866200 520__ $$aA major challenge of lithium metal electrodes, in theory a suitable choice for rechargeable high energy density batteries, comprises non-homogeneous lithium deposition and the growth of reactive high surface area lithium, which eventually yields active material losses and safety risks. While it is hard to fully avoid inhomogeneous deposits, the achievable morphology of the occurring lithium deposits critically determines the long-term cycling behaviour of the cells. In this work, we focus on a combined scanning electron microscopy (SEM) and 7Li nuclear magnetic resonance spectroscopy (7Li-NMR) study to unravel the impact of the choice of conducting salts (LiPF6 and LiTFSI), solvents (EC : DEC, 3 : 7, DME : DOL, 1 : 1), as well as their respective concentrations (1 M, 3 M) on the electrodeposition process, demonstrating that lithium deposition morphologies may be controlled to a large extent by proper choice of cycling conditions and electrolyte constituents. In addition, the applicability of 7Li-NMR spectroscopy to assess the resulting morphology is discussed. It was found, that lithium deposition analysis based on the 7Li chemical shift and intensity should be used carefully, as various morphologies can lead to similar results. Still, our case study reveals that the combination of SEM and NMR data is rather advantageous and offers complementary insights that may provide pathways for the future design of tailored electrolytes.
000866200 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000866200 588__ $$aDataset connected to CrossRef
000866200 7001_ $$00000-0001-7852-4064$$aKolek, Martin$$b1
000866200 7001_ $$00000-0003-4378-4805$$aBieker, Peter$$b2
000866200 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3
000866200 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b4$$eCorresponding author
000866200 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C9CP05334D$$gVol. 21, no. 47, p. 26084 - 26094$$n47$$p26084 - 26094$$tPhysical chemistry, chemical physics$$v21$$x1463-9076$$y2019
000866200 8564_ $$uhttps://juser.fz-juelich.de/record/866200/files/SL44156%20C00277.pdf
000866200 8564_ $$uhttps://juser.fz-juelich.de/record/866200/files/SL44156%20C00277.pdf?subformat=pdfa$$xpdfa
000866200 8564_ $$uhttps://juser.fz-juelich.de/record/866200/files/c9cp05334d.pdf$$yOpenAccess
000866200 8564_ $$uhttps://juser.fz-juelich.de/record/866200/files/c9cp05334d.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866200 8767_ $$8SL44156$$92019-11-07$$d2019-11-07$$eHybrid-OA$$jZahlung erfolgt$$z1600 GBP
000866200 909CO $$ooai:juser.fz-juelich.de:866200$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000866200 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
000866200 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b4$$kFZJ
000866200 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000866200 9141_ $$y2019
000866200 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000866200 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866200 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866200 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2017
000866200 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866200 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866200 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866200 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866200 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000866200 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866200 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866200 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000866200 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866200 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866200 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866200 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000866200 9801_ $$aAPC
000866200 9801_ $$aFullTexts
000866200 980__ $$ajournal
000866200 980__ $$aVDB
000866200 980__ $$aUNRESTRICTED
000866200 980__ $$aI:(DE-Juel1)IEK-12-20141217
000866200 980__ $$aAPC
000866200 981__ $$aI:(DE-Juel1)IMD-4-20141217