Journal Article FZJ-2019-05524

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Reversible jump MCMC for multi-model inference in metabolic flux analysis

 ;

2020
Oxford Univ. Press Oxford

Bioinformatics 36(1), 232 - 240 () [10.1093/bioinformatics/btz500]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: MotivationThe validity of model based inference, as used in systems biology, depends on the underlying model formulation. Often, a vast number of competing models is available, that are built on different assumptions, all consistent with the existing knowledge about the studied biological phenomenon. As a remedy for this, Bayesian Model Averaging (BMA) facilitates parameter and structural inferences based on multiple models simultaneously. However, in fields where a vast number of alternative, high-dimensional and non-linear models are involved, the BMA-based inference task is computationally very challenging.ResultsHere we use BMA in the complex setting of Metabolic Flux Analysis (MFA) to infer whether potentially reversible reactions proceed uni- or bidirectionally, using 13C labeling data and metabolic networks. BMA is applied on a large set of candidate models with differing directionality settings, using a tailored multi-model Markov Chain Monte Carlo (MCMC) approach. The applicability of our algorithm is shown by inferring the in vivo probability of reaction bidirectionalities in a realistic network setup, thereby extending the scope of 13C MFA from parameter to structural inference.

Classification:

Note: Post-Print nicht verfügbar!

Contributing Institute(s):
  1. Biotechnologie (IBG-1)
Research Program(s):
  1. 583 - Innovative Synergisms (POF3-583) (POF3-583)

Appears in the scientific report 2020
Database coverage:
Medline ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Ebsco Academic Search ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; PubMed Central ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-1
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank

 Datensatz erzeugt am 2019-11-12, letzte Änderung am 2021-01-12


Restricted:
Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)