000866412 001__ 866412
000866412 005__ 20210130003442.0
000866412 0247_ $$2doi$$a10.1021/acs.jpclett.9b02381
000866412 0247_ $$2altmetric$$aaltmetric:67642534
000866412 0247_ $$2pmid$$apmid:31500420
000866412 0247_ $$2WOS$$aWOS:000492425100040
000866412 037__ $$aFZJ-2019-05565
000866412 082__ $$a530
000866412 1001_ $$00000-0003-3233-9167$$aStadler, Daniel$$b0
000866412 245__ $$aMagnetic Field-Assisted Chemical Vapor Deposition of Iron Oxide Thin Films: Influence of Field–Matter Interactions on Phase Composition and Morphology
000866412 260__ $$aWashington, DC$$bACS$$c2019
000866412 3367_ $$2DRIVER$$aarticle
000866412 3367_ $$2DataCite$$aOutput Types/Journal article
000866412 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573824927_22184
000866412 3367_ $$2BibTeX$$aARTICLE
000866412 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866412 3367_ $$00$$2EndNote$$aJournal Article
000866412 520__ $$aMagnetic field-assisted CVD offers a direct pathway to manipulate the evolution of microstructure, phase composition, and magnetic properties of the as-prepared film. We report on the role of applied magnetic fields (0.5 T) during a cold-wall CVD deposition of iron oxide from [FeIII(OtBu)3]2 leading to higher crystallinity, larger particulates, and better out-of-plane magnetic anisotropy, if compared with zero-field depositions. Whereas selective formation of homogeneous magnetite films was observed for the field-assisted process, coexistence of hematite and amorphous iron(III) oxide was confirmed under zero-field conditions. Comparison of the coercive field (11 vs 60 mT) indicated lower defect concentration for the field-assisted process with nearly superparamagnetic behavior. X-ray photoemission electron microscopy (X-PEEM) in absorption mode at the O-K and Fe-L3,2 edges confirmed the selective formation of magnetite (field-assisted) and hematite (zero-field) with coexisting amorphous phases, respectively, emphasizing the importance of field–matter interactions in the phase-selective synthesis of magnetic thin films.
000866412 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000866412 588__ $$aDataset connected to CrossRef
000866412 7001_ $$0P:(DE-HGF)0$$aMueller, David N.$$b1
000866412 7001_ $$0P:(DE-HGF)0$$aBrede, Thomas$$b2
000866412 7001_ $$0P:(DE-Juel1)165376$$aDuchoň, Tomáš$$b3
000866412 7001_ $$00000-0002-8363-9613$$aFischer, Thomas$$b4
000866412 7001_ $$0P:(DE-Juel1)172634$$aSarkar, Anirban$$b5
000866412 7001_ $$0P:(DE-Juel1)4744$$aGiesen, Margret$$b6
000866412 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus M.$$b7
000866412 7001_ $$0P:(DE-HGF)0$$aVolkert, Cynthia A.$$b8
000866412 7001_ $$00000-0003-2765-2693$$aMathur, Sanjay$$b9$$eCorresponding author
000866412 773__ $$0PERI:(DE-600)2522838-9$$a10.1021/acs.jpclett.9b02381$$gVol. 10, no. 20, p. 6253 - 6259$$n20$$p6253 - 6259$$tThe journal of physical chemistry letters$$v10$$x1948-7185$$y2019
000866412 8564_ $$uhttps://juser.fz-juelich.de/record/866412/files/acs.jpclett.9b02381-1.pdf$$yRestricted
000866412 8564_ $$uhttps://juser.fz-juelich.de/record/866412/files/acs.jpclett.9b02381-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866412 909CO $$ooai:juser.fz-juelich.de:866412$$pVDB
000866412 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165376$$aForschungszentrum Jülich$$b3$$kFZJ
000866412 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172634$$aForschungszentrum Jülich$$b5$$kFZJ
000866412 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4744$$aForschungszentrum Jülich$$b6$$kFZJ
000866412 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b7$$kFZJ
000866412 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000866412 9141_ $$y2019
000866412 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM LETT : 2017
000866412 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866412 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866412 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866412 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866412 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866412 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866412 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866412 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866412 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYS CHEM LETT : 2017
000866412 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000866412 980__ $$ajournal
000866412 980__ $$aVDB
000866412 980__ $$aI:(DE-Juel1)PGI-6-20110106
000866412 980__ $$aUNRESTRICTED