Journal Article FZJ-2019-05565

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Magnetic Field-Assisted Chemical Vapor Deposition of Iron Oxide Thin Films: Influence of Field–Matter Interactions on Phase Composition and Morphology

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2019
ACS Washington, DC

The journal of physical chemistry letters 10(20), 6253 - 6259 () [10.1021/acs.jpclett.9b02381]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Magnetic field-assisted CVD offers a direct pathway to manipulate the evolution of microstructure, phase composition, and magnetic properties of the as-prepared film. We report on the role of applied magnetic fields (0.5 T) during a cold-wall CVD deposition of iron oxide from [FeIII(OtBu)3]2 leading to higher crystallinity, larger particulates, and better out-of-plane magnetic anisotropy, if compared with zero-field depositions. Whereas selective formation of homogeneous magnetite films was observed for the field-assisted process, coexistence of hematite and amorphous iron(III) oxide was confirmed under zero-field conditions. Comparison of the coercive field (11 vs 60 mT) indicated lower defect concentration for the field-assisted process with nearly superparamagnetic behavior. X-ray photoemission electron microscopy (X-PEEM) in absorption mode at the O-K and Fe-L3,2 edges confirmed the selective formation of magnetite (field-assisted) and hematite (zero-field) with coexisting amorphous phases, respectively, emphasizing the importance of field–matter interactions in the phase-selective synthesis of magnetic thin films.

Classification:

Contributing Institute(s):
  1. Elektronische Eigenschaften (PGI-6)
Research Program(s):
  1. 522 - Controlling Spin-Based Phenomena (POF3-522) (POF3-522)

Appears in the scientific report 2019
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-6
Workflow collections > Public records
Publications database

 Record created 2019-11-14, last modified 2021-01-30


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)