000866482 001__ 866482 000866482 005__ 20210130003450.0 000866482 0247_ $$2doi$$a10.1038/s41598-019-40506-9 000866482 0247_ $$2Handle$$a2128/23394 000866482 0247_ $$2pmid$$apmid:30858434 000866482 0247_ $$2WOS$$aWOS:000460751700007 000866482 037__ $$aFZJ-2019-05584 000866482 082__ $$a600 000866482 1001_ $$0P:(DE-HGF)0$$aPolyakov, Andrey$$b0 000866482 245__ $$aA bismuth triiodide monosheet on Bi2Se3(0001) 000866482 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019 000866482 3367_ $$2DRIVER$$aarticle 000866482 3367_ $$2DataCite$$aOutput Types/Journal article 000866482 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573825102_22184 000866482 3367_ $$2BibTeX$$aARTICLE 000866482 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000866482 3367_ $$00$$2EndNote$$aJournal Article 000866482 520__ $$aA stable BiI3 monosheet has been grown for the first time on the (0001) surface of the topological insulator Bi2Se3 as confirmed by scanning tunnelling microscopy, surface X-ray diffraction, and X-ray photoemision spectroscopy. BiI3 is deposited by molecular beam epitaxy from the crystalline BiTeI precursor that undergoes decomposition sublimation. The key fragment of the bulk BiI3 structure, a2∞[I—Bi—I] layer of edge-sharing BiI6 octahedra, is preserved in the ultra-thin film limit, but exhibits large atomic relaxations. The stacking sequence of the trilayers and alternations of the Bi—I distances in the monosheet are the same as in the bulk BiI3 structure. Momentum resolved photoemission spectroscopy indicates a direct band gap of 1.2 eV. The Dirac surface state is completely destroyed and a new flat band appears in the band gap of the BiI3 film that could be interpreted as an interface state. 000866482 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0 000866482 588__ $$aDataset connected to CrossRef 000866482 7001_ $$0P:(DE-HGF)0$$aMohseni, Katayoon$$b1 000866482 7001_ $$0P:(DE-HGF)0$$aCastro, German R.$$b2 000866482 7001_ $$0P:(DE-HGF)0$$aRubio-Zuazo, Juan$$b3 000866482 7001_ $$0P:(DE-HGF)0$$aZeugner, Alexander$$b4 000866482 7001_ $$0P:(DE-HGF)0$$aIsaeva, Anna$$b5 000866482 7001_ $$0P:(DE-Juel1)171668$$aChen, Ying-Jiun$$b6 000866482 7001_ $$0P:(DE-Juel1)168293$$aTusche, Christian$$b7 000866482 7001_ $$0P:(DE-HGF)0$$aMeyerheim, Holger L.$$b8$$eCorresponding author 000866482 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-019-40506-9$$gVol. 9, no. 1, p. 4052$$n1$$p4052$$tScientific reports$$v9$$x2045-2322$$y2019 000866482 8564_ $$uhttps://juser.fz-juelich.de/record/866482/files/s41598-019-40506-9.pdf$$yOpenAccess 000866482 8564_ $$uhttps://juser.fz-juelich.de/record/866482/files/s41598-019-40506-9.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000866482 909CO $$ooai:juser.fz-juelich.de:866482$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000866482 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171668$$aForschungszentrum Jülich$$b6$$kFZJ 000866482 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168293$$aForschungszentrum Jülich$$b7$$kFZJ 000866482 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0 000866482 9141_ $$y2019 000866482 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000866482 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000866482 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000866482 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000866482 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000866482 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017 000866482 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000866482 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000866482 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000866482 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000866482 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000866482 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000866482 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000866482 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000866482 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000866482 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000866482 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000866482 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central 000866482 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000866482 920__ $$lyes 000866482 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0 000866482 980__ $$ajournal 000866482 980__ $$aVDB 000866482 980__ $$aUNRESTRICTED 000866482 980__ $$aI:(DE-Juel1)PGI-6-20110106 000866482 9801_ $$aFullTexts