000866482 001__ 866482
000866482 005__ 20210130003450.0
000866482 0247_ $$2doi$$a10.1038/s41598-019-40506-9
000866482 0247_ $$2Handle$$a2128/23394
000866482 0247_ $$2pmid$$apmid:30858434
000866482 0247_ $$2WOS$$aWOS:000460751700007
000866482 037__ $$aFZJ-2019-05584
000866482 082__ $$a600
000866482 1001_ $$0P:(DE-HGF)0$$aPolyakov, Andrey$$b0
000866482 245__ $$aA bismuth triiodide monosheet on Bi2Se3(0001)
000866482 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019
000866482 3367_ $$2DRIVER$$aarticle
000866482 3367_ $$2DataCite$$aOutput Types/Journal article
000866482 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573825102_22184
000866482 3367_ $$2BibTeX$$aARTICLE
000866482 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866482 3367_ $$00$$2EndNote$$aJournal Article
000866482 520__ $$aA stable BiI3 monosheet has been grown for the first time on the (0001) surface of the topological insulator Bi2Se3 as confirmed by scanning tunnelling microscopy, surface X-ray diffraction, and X-ray photoemision spectroscopy. BiI3 is deposited by molecular beam epitaxy from the crystalline BiTeI precursor that undergoes decomposition sublimation. The key fragment of the bulk BiI3 structure, a2∞[I—Bi—I] layer of edge-sharing BiI6 octahedra, is preserved in the ultra-thin film limit, but exhibits large atomic relaxations. The stacking sequence of the trilayers and alternations of the Bi—I distances in the monosheet are the same as in the bulk BiI3 structure. Momentum resolved photoemission spectroscopy indicates a direct band gap of 1.2 eV. The Dirac surface state is completely destroyed and a new flat band appears in the band gap of the BiI3 film that could be interpreted as an interface state.
000866482 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000866482 588__ $$aDataset connected to CrossRef
000866482 7001_ $$0P:(DE-HGF)0$$aMohseni, Katayoon$$b1
000866482 7001_ $$0P:(DE-HGF)0$$aCastro, German R.$$b2
000866482 7001_ $$0P:(DE-HGF)0$$aRubio-Zuazo, Juan$$b3
000866482 7001_ $$0P:(DE-HGF)0$$aZeugner, Alexander$$b4
000866482 7001_ $$0P:(DE-HGF)0$$aIsaeva, Anna$$b5
000866482 7001_ $$0P:(DE-Juel1)171668$$aChen, Ying-Jiun$$b6
000866482 7001_ $$0P:(DE-Juel1)168293$$aTusche, Christian$$b7
000866482 7001_ $$0P:(DE-HGF)0$$aMeyerheim, Holger L.$$b8$$eCorresponding author
000866482 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-019-40506-9$$gVol. 9, no. 1, p. 4052$$n1$$p4052$$tScientific reports$$v9$$x2045-2322$$y2019
000866482 8564_ $$uhttps://juser.fz-juelich.de/record/866482/files/s41598-019-40506-9.pdf$$yOpenAccess
000866482 8564_ $$uhttps://juser.fz-juelich.de/record/866482/files/s41598-019-40506-9.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866482 909CO $$ooai:juser.fz-juelich.de:866482$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866482 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171668$$aForschungszentrum Jülich$$b6$$kFZJ
000866482 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168293$$aForschungszentrum Jülich$$b7$$kFZJ
000866482 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000866482 9141_ $$y2019
000866482 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866482 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000866482 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000866482 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866482 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000866482 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000866482 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000866482 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000866482 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866482 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866482 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866482 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866482 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866482 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866482 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866482 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866482 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866482 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000866482 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866482 920__ $$lyes
000866482 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000866482 980__ $$ajournal
000866482 980__ $$aVDB
000866482 980__ $$aUNRESTRICTED
000866482 980__ $$aI:(DE-Juel1)PGI-6-20110106
000866482 9801_ $$aFullTexts