001 | 866482 | ||
005 | 20210130003450.0 | ||
024 | 7 | _ | |a 10.1038/s41598-019-40506-9 |2 doi |
024 | 7 | _ | |a 2128/23394 |2 Handle |
024 | 7 | _ | |a pmid:30858434 |2 pmid |
024 | 7 | _ | |a WOS:000460751700007 |2 WOS |
037 | _ | _ | |a FZJ-2019-05584 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Polyakov, Andrey |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a A bismuth triiodide monosheet on Bi2Se3(0001) |
260 | _ | _ | |a [London] |c 2019 |b Macmillan Publishers Limited, part of Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1573825102_22184 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A stable BiI3 monosheet has been grown for the first time on the (0001) surface of the topological insulator Bi2Se3 as confirmed by scanning tunnelling microscopy, surface X-ray diffraction, and X-ray photoemision spectroscopy. BiI3 is deposited by molecular beam epitaxy from the crystalline BiTeI precursor that undergoes decomposition sublimation. The key fragment of the bulk BiI3 structure, a2∞[I—Bi—I] layer of edge-sharing BiI6 octahedra, is preserved in the ultra-thin film limit, but exhibits large atomic relaxations. The stacking sequence of the trilayers and alternations of the Bi—I distances in the monosheet are the same as in the bulk BiI3 structure. Momentum resolved photoemission spectroscopy indicates a direct band gap of 1.2 eV. The Dirac surface state is completely destroyed and a new flat band appears in the band gap of the BiI3 film that could be interpreted as an interface state. |
536 | _ | _ | |a 522 - Controlling Spin-Based Phenomena (POF3-522) |0 G:(DE-HGF)POF3-522 |c POF3-522 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Mohseni, Katayoon |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Castro, German R. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Rubio-Zuazo, Juan |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Zeugner, Alexander |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Isaeva, Anna |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Chen, Ying-Jiun |0 P:(DE-Juel1)171668 |b 6 |
700 | 1 | _ | |a Tusche, Christian |0 P:(DE-Juel1)168293 |b 7 |
700 | 1 | _ | |a Meyerheim, Holger L. |0 P:(DE-HGF)0 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1038/s41598-019-40506-9 |g Vol. 9, no. 1, p. 4052 |0 PERI:(DE-600)2615211-3 |n 1 |p 4052 |t Scientific reports |v 9 |y 2019 |x 2045-2322 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/866482/files/s41598-019-40506-9.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/866482/files/s41598-019-40506-9.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:866482 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)171668 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)168293 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-522 |2 G:(DE-HGF)POF3-500 |v Controlling Spin-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-6-20110106 |k PGI-6 |l Elektronische Eigenschaften |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-6-20110106 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|