000866640 001__ 866640
000866640 005__ 20240711101552.0
000866640 0247_ $$2doi$$a10.3390/en12244707
000866640 0247_ $$2Handle$$a2128/23796
000866640 0247_ $$2altmetric$$aaltmetric:72775170
000866640 0247_ $$2WOS$$aWOS:000506918400100
000866640 037__ $$aFZJ-2019-05719
000866640 082__ $$a620
000866640 1001_ $$0P:(DE-Juel1)172722$$aCerniauskas, Simonas$$b0$$eCorresponding author
000866640 245__ $$aFuture Hydrogen Markets for Transportation and Industry: The Impact of CO2 Taxes
000866640 260__ $$aBasel$$bMDPI$$c2019
000866640 3367_ $$2DRIVER$$aarticle
000866640 3367_ $$2DataCite$$aOutput Types/Journal article
000866640 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1578477824_1777
000866640 3367_ $$2BibTeX$$aARTICLE
000866640 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866640 3367_ $$00$$2EndNote$$aJournal Article
000866640 520__ $$aThe technological lock-in of the transportation and industrial sector can be largely attributed to the limited availability of alternative fuel infrastructures. Herein, a countrywide supply chain analysis of Germany, spanning until 2050, is applied to investigate promising infrastructure development pathways and associated hydrogen distribution costs for each analyzed hydrogen market. Analyzed supply chain pathways include seasonal storage to balance fluctuating renewable power generation with necessary purification, as well as trailer- and pipeline-based hydrogen delivery. The analysis encompasses green hydrogen feedstock in the chemical industry and fuel cell-based mobility applications, such as local buses, non-electrified regional trains, material handling vehicles, and trucks, as well as passenger cars. Our results indicate that the utilization of low-cost, long-term storage and improved refueling station utilization have the highest impact during the market introduction phase. We find that public transport and captive fleets offer a cost-efficient countrywide renewable hydrogen supply roll-out option. Furthermore, we show that, at comparable effective carbon tax resulting from the current energy tax rates in Germany, hydrogen is cost-competitive in the transportation sector by the year 2025. Moreover, we show that sector-specific CO2 taxes are required to provide a cost-competitive green hydrogen supply in both the transportation and industrial sectors.
000866640 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000866640 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000866640 588__ $$aDataset connected to CrossRef
000866640 7001_ $$0P:(DE-Juel1)129852$$aGrube, Thomas$$b1
000866640 7001_ $$0P:(DE-HGF)0$$aPraktiknjo, Aaron$$b2
000866640 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b3
000866640 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b4
000866640 773__ $$0PERI:(DE-600)2437446-5$$a10.3390/en12244707$$gVol. 12, no. 24, p. 4707 -$$n24$$p4707 -$$tEnergies$$v12$$x1996-1073$$y2019
000866640 8564_ $$uhttps://juser.fz-juelich.de/record/866640/files/Invoice_MDPI_energies-667469_1387.68EUR.pdf$$yRestricted
000866640 8564_ $$uhttps://juser.fz-juelich.de/record/866640/files/Invoice_MDPI_energies-667469_1387.68EUR.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866640 8564_ $$uhttps://juser.fz-juelich.de/record/866640/files/energies-12-04707-v4.pdf$$yOpenAccess
000866640 8564_ $$uhttps://juser.fz-juelich.de/record/866640/files/energies-12-04707-v4.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866640 8767_ $$8energies-667469$$92019-12-06$$d2020-01-07$$eAPC$$jZahlung erfolgt$$penergies-667469
000866640 909CO $$ooai:juser.fz-juelich.de:866640$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000866640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172722$$aForschungszentrum Jülich$$b0$$kFZJ
000866640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129852$$aForschungszentrum Jülich$$b1$$kFZJ
000866640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b3$$kFZJ
000866640 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b3$$kRWTH
000866640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b4$$kFZJ
000866640 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000866640 9141_ $$y2019
000866640 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866640 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866640 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000866640 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866640 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGIES : 2017
000866640 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000866640 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000866640 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866640 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866640 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866640 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866640 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866640 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866640 920__ $$lyes
000866640 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000866640 9801_ $$aAPC
000866640 9801_ $$aFullTexts
000866640 980__ $$ajournal
000866640 980__ $$aVDB
000866640 980__ $$aUNRESTRICTED
000866640 980__ $$aI:(DE-Juel1)IEK-3-20101013
000866640 980__ $$aAPC
000866640 981__ $$aI:(DE-Juel1)ICE-2-20101013