001     866640
005     20240711101552.0
024 7 _ |a 10.3390/en12244707
|2 doi
024 7 _ |a 2128/23796
|2 Handle
024 7 _ |a altmetric:72775170
|2 altmetric
024 7 _ |a WOS:000506918400100
|2 WOS
037 _ _ |a FZJ-2019-05719
082 _ _ |a 620
100 1 _ |a Cerniauskas, Simonas
|0 P:(DE-Juel1)172722
|b 0
|e Corresponding author
245 _ _ |a Future Hydrogen Markets for Transportation and Industry: The Impact of CO2 Taxes
260 _ _ |a Basel
|c 2019
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1578477824_1777
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The technological lock-in of the transportation and industrial sector can be largely attributed to the limited availability of alternative fuel infrastructures. Herein, a countrywide supply chain analysis of Germany, spanning until 2050, is applied to investigate promising infrastructure development pathways and associated hydrogen distribution costs for each analyzed hydrogen market. Analyzed supply chain pathways include seasonal storage to balance fluctuating renewable power generation with necessary purification, as well as trailer- and pipeline-based hydrogen delivery. The analysis encompasses green hydrogen feedstock in the chemical industry and fuel cell-based mobility applications, such as local buses, non-electrified regional trains, material handling vehicles, and trucks, as well as passenger cars. Our results indicate that the utilization of low-cost, long-term storage and improved refueling station utilization have the highest impact during the market introduction phase. We find that public transport and captive fleets offer a cost-efficient countrywide renewable hydrogen supply roll-out option. Furthermore, we show that, at comparable effective carbon tax resulting from the current energy tax rates in Germany, hydrogen is cost-competitive in the transportation sector by the year 2025. Moreover, we show that sector-specific CO2 taxes are required to provide a cost-competitive green hydrogen supply in both the transportation and industrial sectors.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|x 1
|c PHD-NO-GRANT-20170405
|a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Grube, Thomas
|0 P:(DE-Juel1)129852
|b 1
700 1 _ |a Praktiknjo, Aaron
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 3
700 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 4
773 _ _ |a 10.3390/en12244707
|g Vol. 12, no. 24, p. 4707 -
|0 PERI:(DE-600)2437446-5
|n 24
|p 4707 -
|t Energies
|v 12
|y 2019
|x 1996-1073
856 4 _ |u https://juser.fz-juelich.de/record/866640/files/Invoice_MDPI_energies-667469_1387.68EUR.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/866640/files/Invoice_MDPI_energies-667469_1387.68EUR.pdf?subformat=pdfa
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/866640/files/energies-12-04707-v4.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/866640/files/energies-12-04707-v4.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866640
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172722
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129852
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)129928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156460
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGIES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21