000866732 001__ 866732
000866732 005__ 20210130003612.0
000866732 0247_ $$2doi$$a10.1007/s10494-017-9876-0
000866732 0247_ $$2ISSN$$a0003-6994
000866732 0247_ $$2ISSN$$a0365-7140
000866732 0247_ $$2ISSN$$a1386-6184
000866732 0247_ $$2ISSN$$a1573-1987
000866732 0247_ $$2ISSN$$a1872-8065
000866732 0247_ $$2ISSN$$a2212-0939
000866732 037__ $$aFZJ-2019-05801
000866732 082__ $$a600
000866732 1001_ $$0P:(DE-Juel1)165948$$aLintermann, Andreas$$b0
000866732 245__ $$aA Hierarchical Numerical Journey Through the Nasal Cavity: from Nose-Like Models to Real Anatomies
000866732 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V.$$c2019
000866732 3367_ $$2DRIVER$$aarticle
000866732 3367_ $$2DataCite$$aOutput Types/Journal article
000866732 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1574423356_25333
000866732 3367_ $$2BibTeX$$aARTICLE
000866732 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866732 3367_ $$00$$2EndNote$$aJournal Article
000866732 520__ $$aThe immense increase of computational power in the past decades led to an evolution of numerical simulations in all kind of engineering applications. New developments in medical technologies in rhinology employ computational fluid dynamics methods to explore pathologies from a fluid-mechanics point of view. Such methods have grown mature and are about to enter daily clinical use to support doctors in decision making. In light of the importance of effective respiration on patient comfort and health care costs, individualized simulations ultimately have the potential to revolutionize medical diagnosis, drug delivery, and surgery planning. The present article reviews experiments, simulations, and algorithmic approaches developed at RWTH Aachen University that have evolved from fundamental physical analyses using nose-like models to patient-individual analyses based on realistic anatomies and high resolution computations in hierarchical manner
000866732 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000866732 588__ $$aDataset connected to CrossRef
000866732 7001_ $$aSchröder, Wolfgang$$b1
000866732 773__ $$0PERI:(DE-600)1492282-4$$a10.1007/s10494-017-9876-0$$gVol. 102, no. 1, p. 89 - 116$$n1$$p89 - 116$$tFlow, turbulence and combustion$$v102$$x0003-6994$$y2019
000866732 8564_ $$uhttp://link.springer.com/10.1007/s10494-017-9876-0
000866732 8564_ $$uhttps://juser.fz-juelich.de/record/866732/files/paper_FTAC_SI_health_Lintermann.pdf$$yRestricted
000866732 8564_ $$uhttps://juser.fz-juelich.de/record/866732/files/paper_FTAC_SI_health_Lintermann.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866732 909CO $$ooai:juser.fz-juelich.de:866732$$pextern4vita
000866732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165948$$aForschungszentrum Jülich$$b0$$kFZJ
000866732 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000866732 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866732 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866732 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFLOW TURBUL COMBUST : 2017
000866732 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866732 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866732 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866732 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866732 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866732 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866732 9801_ $$aEXTERN4VITA
000866732 980__ $$ajournal
000866732 980__ $$aUSER
000866732 980__ $$aI:(DE-Juel1)JSC-20090406