001     866732
005     20210130003612.0
024 7 _ |a 10.1007/s10494-017-9876-0
|2 doi
024 7 _ |a 0003-6994
|2 ISSN
024 7 _ |a 0365-7140
|2 ISSN
024 7 _ |a 1386-6184
|2 ISSN
024 7 _ |a 1573-1987
|2 ISSN
024 7 _ |a 1872-8065
|2 ISSN
024 7 _ |a 2212-0939
|2 ISSN
037 _ _ |a FZJ-2019-05801
082 _ _ |a 600
100 1 _ |a Lintermann, Andreas
|0 P:(DE-Juel1)165948
|b 0
245 _ _ |a A Hierarchical Numerical Journey Through the Nasal Cavity: from Nose-Like Models to Real Anatomies
260 _ _ |a Dordrecht [u.a.]
|c 2019
|b Springer Science + Business Media B.V.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1574423356_25333
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The immense increase of computational power in the past decades led to an evolution of numerical simulations in all kind of engineering applications. New developments in medical technologies in rhinology employ computational fluid dynamics methods to explore pathologies from a fluid-mechanics point of view. Such methods have grown mature and are about to enter daily clinical use to support doctors in decision making. In light of the importance of effective respiration on patient comfort and health care costs, individualized simulations ultimately have the potential to revolutionize medical diagnosis, drug delivery, and surgery planning. The present article reviews experiments, simulations, and algorithmic approaches developed at RWTH Aachen University that have evolved from fundamental physical analyses using nose-like models to patient-individual analyses based on realistic anatomies and high resolution computations in hierarchical manner
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schröder, Wolfgang
|b 1
773 _ _ |a 10.1007/s10494-017-9876-0
|g Vol. 102, no. 1, p. 89 - 116
|0 PERI:(DE-600)1492282-4
|n 1
|p 89 - 116
|t Flow, turbulence and combustion
|v 102
|y 2019
|x 0003-6994
856 4 _ |u http://link.springer.com/10.1007/s10494-017-9876-0
856 4 _ |u https://juser.fz-juelich.de/record/866732/files/paper_FTAC_SI_health_Lintermann.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/866732/files/paper_FTAC_SI_health_Lintermann.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:866732
|p extern4vita
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165948
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FLOW TURBUL COMBUST : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
980 1 _ |a EXTERN4VITA
980 _ _ |a journal
980 _ _ |a USER
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21