001     866738
005     20210130003615.0
024 7 _ |a 10.1016/j.compbiomed.2013.09.003
|2 doi
024 7 _ |a 0010-4825
|2 ISSN
024 7 _ |a 1879-0534
|2 ISSN
037 _ _ |a FZJ-2019-05807
082 _ _ |a 570
100 1 _ |a Lintermann, Andreas
|0 P:(DE-Juel1)165948
|b 0
|u fzj
245 _ _ |a Fluid mechanics based classification of the respiratory efficiency of several nasal cavities
260 _ _ |a Amsterdam [u.a.]
|c 2013
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1574428465_15690
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The flow in the human nasal cavity is of great importance to understand rhinologic pathologies like impaired respiration or heating capabilities, a diminished sense of taste and smell, and the presence of dry mucous membranes. To numerically analyze this flow problem a highly efficient and scalable Thermal Lattice-BGK (TLBGK) solver is used, which is very well suited for flows in intricate geometries. The generation of the computational mesh is completely automatic and highly parallelized such that it can be executed efficiently on High Performance Computers (HPC). An evaluation of the functionality of nasal cavities is based on an analysis of pressure drop, secondary flow structures, wall-shear stress distributions, and temperature variations from the nostrils to the pharynx. The results of the flow fields of three completely different nasal cavities allow their classification into ability groups and support the \textit{a priori} decision process on surgical interventions.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Meinke, Matthias
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schröder, Wolfgang
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1016/j.compbiomed.2013.09.003
|g Vol. 43, no. 11, p. 1833 - 1852
|0 PERI:(DE-600)1496984-1
|n 11
|p 1833 - 1852
|t Computers in biology and medicine
|v 43
|y 2013
|x 0010-4825
856 4 _ |u http://linkinghub.elsevier.com/retrieve/pii/S0010482513002540
856 4 _ |u https://juser.fz-juelich.de/record/866738/files/CBM_Lintermann_2013.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:866738
|p extern4vita
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165948
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT BIOL MED : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
980 1 _ |a EXTERN4VITA
980 _ _ |a journal
980 _ _ |a USER
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21