000866742 001__ 866742
000866742 005__ 20210130003616.0
000866742 020__ $$a978-3-642-15747-9
000866742 0247_ $$2doi$$a10.1007/978-3-319-10810-0_21
000866742 037__ $$aFZJ-2019-05811
000866742 041__ $$aEnglish
000866742 1001_ $$0P:(DE-HGF)0$$aGadeschi, Gonzalo Brito$$b0
000866742 245__ $$aTowards Large Multi-scale Particle Simulations with Conjugate Heat Transfer on Heterogeneous Super Computers
000866742 260__ $$aCham$$bSpringer International Publishing$$c2015
000866742 29510 $$aHigh Performance Computing in Science and Engineering ‘14 / Nagel, Wolfgang E. (Editor)   ; Cham : Springer International Publishing, 2015, Chapter 21 ; ISBN: 978-3-319-10809-4 ; doi:10.1007/978-3-319-10810-0
000866742 300__ $$a307-319
000866742 3367_ $$2ORCID$$aBOOK_CHAPTER
000866742 3367_ $$07$$2EndNote$$aBook Section
000866742 3367_ $$2DRIVER$$abookPart
000866742 3367_ $$2BibTeX$$aINBOOK
000866742 3367_ $$2DataCite$$aOutput Types/Book chapter
000866742 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1575388368_15199
000866742 520__ $$aWe present numerical methods based on hierarchical Cartesian grids for the simulation of particle flows of different length scales. These include Eulerian-Lagrangian approaches for fully resolved moving particles with conjugate heat-transfer as well as one-way coupled Lagrangian particle models for large-scale particle simulations. The domain decomposition of all phases involved is performed on a joint hierarchical Cartesian grid where the individual cells can belong to one or more sub-grids discretizing different physics, such that numerical methods can operate independently on these sub-sets of the joint mesh to solve, e.g., the Navier-Stokes equations, the heat equation, or the particle motion. Due to the wide range of length scales involved, we first demonstrate the scalability of our automatic mesh generation approach. We then proceed to detail the method for fully-resolved particle simulation and the first steps towards its porting to heterogeneous supercomputers. Finally, we detail the parallelization strategy for the particle motion used by large scale one-way Lagrangian particle simulations.
000866742 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000866742 588__ $$aDataset connected to CrossRef Book
000866742 7001_ $$0P:(DE-HGF)0$$aSiewert, Christoph$$b1
000866742 7001_ $$0P:(DE-Juel1)165948$$aLintermann, Andreas$$b2
000866742 7001_ $$0P:(DE-HGF)0$$aMeinke, Matthias$$b3
000866742 7001_ $$0P:(DE-HGF)0$$aSchröder, Wolfgang$$b4
000866742 773__ $$a10.1007/978-3-319-10810-0_21
000866742 8564_ $$uhttp://link.springer.com/10.1007/978-3-642-15748-6
000866742 8564_ $$uhttps://juser.fz-juelich.de/record/866742/files/HighPerformanceComputinginScienceandEngineering14-2015-TowardsLargeMulti-scaleParticleSimulationswithConjugateHeatTra.pdf$$yRestricted
000866742 8564_ $$uhttps://juser.fz-juelich.de/record/866742/files/HighPerformanceComputinginScienceandEngineering14-2015-TowardsLargeMulti-scaleParticleSimulationswithConjugateHeatTra.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866742 909CO $$ooai:juser.fz-juelich.de:866742$$pextern4vita
000866742 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000866742 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000866742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165948$$aForschungszentrum Jülich$$b2$$kFZJ
000866742 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000866742 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH
000866742 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000866742 980__ $$acontb
000866742 980__ $$aUSER
000866742 980__ $$aI:(DE-Juel1)JSC-20090406
000866742 9801_ $$aEXTERN4VITA