000866744 001__ 866744
000866744 005__ 20210130003618.0
000866744 0247_ $$2doi$$a10.1007/978-3-319-46735-1_12
000866744 037__ $$aFZJ-2019-05813
000866744 1001_ $$0P:(DE-HGF)0$$aSchlottke-Lakemper, Michael$$b0
000866744 245__ $$aCFD/CAA Simulations on HPC Systems
000866744 260__ $$aCham$$bSpringer International Publishing$$c2016
000866744 29510 $$aSustained Simulation Performance 2016 / Resch, Michael M. (Editor)   ; Cham : Springer International Publishing, 2016, Chapter 12 ; ISBN: 978-3-319-46734-4 ; doi:10.1007/978-3-319-46735-1
000866744 300__ $$a139-157
000866744 3367_ $$2ORCID$$aBOOK_CHAPTER
000866744 3367_ $$07$$2EndNote$$aBook Section
000866744 3367_ $$2DRIVER$$abookPart
000866744 3367_ $$2BibTeX$$aINBOOK
000866744 3367_ $$2DataCite$$aOutput Types/Book chapter
000866744 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1575388400_15199
000866744 520__ $$aIn this paper, a highly scalable numerical method is presented that allows to compute the aerodynamic sound from a turbulent flow field on HPC systems. A hybrid CFD-CAA method is used to compute the flow and the acoustic field, in which the two solvers are running in parallel to avoid expensive I/O operations for the acoustic source terms. Herein, the acoustic perturbation equations are solved by a high-order discontinuous Galerkin scheme using the acoustic source terms obtained from an approximate solution of the Navier-Stokes equations. Both solvers run simultaneously and operate on differently refined hierarchical Cartesian grids. This direct-hybrid method is validated by monopole and pressure pulse simulations and is used for performance measurements on current HPC systems. The results highlight the limitations of classic hybrid methods and show that the new approach is suitable for highly parallel simulations. Michael
000866744 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000866744 588__ $$aDataset connected to CrossRef Book
000866744 7001_ $$0P:(DE-HGF)0$$aKlemp, Fabian$$b1
000866744 7001_ $$0P:(DE-HGF)0$$aCheng, Hsun-Jen$$b2
000866744 7001_ $$0P:(DE-Juel1)165948$$aLintermann, Andreas$$b3
000866744 7001_ $$0P:(DE-HGF)0$$aMeinke, Matthias$$b4
000866744 7001_ $$0P:(DE-HGF)0$$aSchröder, Wolfgang$$b5
000866744 773__ $$a10.1007/978-3-319-46735-1_12
000866744 8564_ $$uhttp://link.springer.com/10.1007/978-3-319-46735-1_12
000866744 8564_ $$uhttps://juser.fz-juelich.de/record/866744/files/Sustained%20Simulation%20Performance%202016%20-%202016%20-%20CFDCAA%20Simulations%20on%20HPC%20Systems%20-%20Schlottke-Lakemper%20et%20al.pdf$$yRestricted
000866744 8564_ $$uhttps://juser.fz-juelich.de/record/866744/files/Sustained%20Simulation%20Performance%202016%20-%202016%20-%20CFDCAA%20Simulations%20on%20HPC%20Systems%20-%20Schlottke-Lakemper%20et%20al.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866744 909CO $$ooai:juser.fz-juelich.de:866744$$pextern4vita
000866744 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000866744 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000866744 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000866744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165948$$aForschungszentrum Jülich$$b3$$kFZJ
000866744 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH
000866744 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH
000866744 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000866744 980__ $$acontb
000866744 980__ $$aUSER
000866744 980__ $$aI:(DE-Juel1)JSC-20090406
000866744 9801_ $$aEXTERN4VITA