000867483 001__ 867483
000867483 005__ 20210130003742.0
000867483 037__ $$aFZJ-2019-06122
000867483 041__ $$aEnglish
000867483 1001_ $$0P:(DE-Juel1)165948$$aLintermann, Andreas$$b0$$ufzj
000867483 1112_ $$aECCOMAS Thematic International Conference on Simulation and Modeling of Biological Flows$$cBrussels$$d2011-09-21 - 2011-09-23$$gSIMBIO 2011$$wBelgium
000867483 245__ $$aInvestigations of the Inspiration and Heating Capability of the Human Nasal Cavity Based on a Lattice-Boltzmann Method
000867483 260__ $$c2011
000867483 300__ $$a-
000867483 3367_ $$2ORCID$$aCONFERENCE_PAPER
000867483 3367_ $$033$$2EndNote$$aConference Paper
000867483 3367_ $$2BibTeX$$aINPROCEEDINGS
000867483 3367_ $$2DRIVER$$aconferenceObject
000867483 3367_ $$2DataCite$$aOutput Types/Conference Paper
000867483 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1575391241_14689
000867483 520__ $$aComplaints like impaired respiration capabilities or a reduced sense of smell and taste are common for pathologically shaped nasal cavities. The Lattice-Boltzmann Method (LBM), which is particularly suited to simulate flows in intricate geometries, is used to analyze the influence of the geometry of the nasal cavity on the pressure loss in a non-invasive pre-surgical step to support surgical decision processes. Another important function of the nasal cavity is the moisturization and heating of the inhaled air. To analyze complaints caused by a diminished heating function a passive scalar convection-diffusion equation for the temperature is solved by a Thermal Lattice-Boltzmann Method. After a successful validation of the method for the flow over a heated isothermal flat plate, a comparison of the functionalities of a modified nasal cavity after rhino-anaplasty and a cavity with swollen turbinates is performed to understand the influence of the geometry on the breathing capability and the ability to heat up the inhaled air.
000867483 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000867483 7001_ $$0P:(DE-HGF)0$$aMeinke, Matthias$$b1
000867483 7001_ $$0P:(DE-HGF)0$$aSchröder, Wolfgang$$b2
000867483 8564_ $$uProceedings of the ECCOMAS Thematic International Conference on Simulation and Modeling of Biological Flows (SIMBIO 2011) - 2011 - Inve.pdf
000867483 909CO $$ooai:juser.fz-juelich.de:867483$$pextern4vita
000867483 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165948$$aForschungszentrum Jülich$$b0$$kFZJ
000867483 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000867483 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000867483 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000867483 9801_ $$aEXTERN4VITA
000867483 980__ $$acontrib
000867483 980__ $$aUSER
000867483 980__ $$aI:(DE-Juel1)JSC-20090406