000867555 001__ 867555
000867555 005__ 20240610120522.0
000867555 0247_ $$2doi$$a10.1088/1367-2630/ab5c70
000867555 0247_ $$2Handle$$a2128/23774
000867555 0247_ $$2WOS$$aWOS:000513663400023
000867555 0247_ $$2altmetric$$aaltmetric:78016960
000867555 037__ $$aFZJ-2019-06178
000867555 082__ $$a530
000867555 1001_ $$0P:(DE-HGF)0$$aAbaurrea-Velasco, Clara$$b0$$eCorresponding author
000867555 245__ $$aVesicles with internal active filaments: self-organized propulsion controls shape, motility, and dynamical response
000867555 260__ $$a[London]$$bIOP$$c2019
000867555 3367_ $$2DRIVER$$aarticle
000867555 3367_ $$2DataCite$$aOutput Types/Journal article
000867555 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582101526_3360
000867555 3367_ $$2BibTeX$$aARTICLE
000867555 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867555 3367_ $$00$$2EndNote$$aJournal Article
000867555 520__ $$aSelf-propulsion and navigation due to the sensing of environmental conditions --- such as durotaxis and chemotaxis --- are remarkable properties of biological cells that cannot be modeled by single-component self-propelled particles. Therefore, we introduce and study "flexocytes", deformable vesicles with enclosed attached self-propelled pushing and pulling filaments that align due to steric and membrane-mediated interactions. Using computer simulations in two dimensions, we show that the membrane deforms under the propulsion forces and forms shapes mimicking motile biological cells, such as keratocytes and neutrophils. When interacting with walls or with interfaces between different substrates, the internal structure of a flexocyte reorganizes, resulting in a preferred angle of reflection or deflection, respectively. We predict a correlation between motility patterns, shapes, characteristics of the internal forces, and the response to micropatterned substrates and external stimuli. We propose that engineered flexocytes with desired mechanosensitive capabilities enable the construction of soft-matter microbots.
000867555 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000867555 536__ $$0G:(DE-Juel1)jiff26_20110501$$aHydrodynamics of Active Biological Systems (jiff26_20110501)$$cjiff26_20110501$$fHydrodynamics of Active Biological Systems$$x1
000867555 588__ $$aDataset connected to CrossRef
000867555 7001_ $$0P:(DE-Juel1)130514$$aAuth, Thorsten$$b1$$eCorresponding author
000867555 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2$$eCorresponding author
000867555 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/ab5c70$$p123024$$tNew journal of physics$$v21$$x1367-2630$$y2019
000867555 8564_ $$uhttps://juser.fz-juelich.de/record/867555/files/8134432_0.pdf
000867555 8564_ $$uhttps://juser.fz-juelich.de/record/867555/files/8134432_0.pdf?subformat=pdfa$$xpdfa
000867555 8564_ $$uhttps://juser.fz-juelich.de/record/867555/files/Abaurrea-Velasco_2019_New_J._Phys._21_123024.pdf$$yOpenAccess
000867555 8564_ $$uhttps://juser.fz-juelich.de/record/867555/files/Abaurrea-Velasco_2019_New_J._Phys._21_123024.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867555 8767_ $$88134432$$92019-11-29$$d2019-12-04$$eAPC$$jZahlung erfolgt$$pab5c70
000867555 909CO $$ooai:juser.fz-juelich.de:867555$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000867555 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000867555 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867555 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000867555 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J PHYS : 2017
000867555 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000867555 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000867555 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867555 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867555 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867555 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000867555 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867555 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000867555 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867555 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867555 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000867555 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867555 9141_ $$y2019
000867555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130514$$aForschungszentrum Jülich$$b1$$kFZJ
000867555 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b2$$kFZJ
000867555 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000867555 920__ $$lno
000867555 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000867555 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000867555 9801_ $$aAPC
000867555 9801_ $$aFullTexts
000867555 980__ $$ajournal
000867555 980__ $$aVDB
000867555 980__ $$aI:(DE-Juel1)ICS-2-20110106
000867555 980__ $$aI:(DE-82)080012_20140620
000867555 980__ $$aAPC
000867555 980__ $$aUNRESTRICTED
000867555 981__ $$aI:(DE-Juel1)IBI-5-20200312
000867555 981__ $$aI:(DE-Juel1)IAS-2-20090406