Hauptseite > Workflowsammlungen > Publikationsgebühren > Vesicles with internal active filaments: self-organized propulsion controls shape, motility, and dynamical response > print |
001 | 867555 | ||
005 | 20240610120522.0 | ||
024 | 7 | _ | |2 doi |a 10.1088/1367-2630/ab5c70 |
024 | 7 | _ | |2 Handle |a 2128/23774 |
024 | 7 | _ | |a WOS:000513663400023 |2 WOS |
024 | 7 | _ | |a altmetric:78016960 |2 altmetric |
037 | _ | _ | |a FZJ-2019-06178 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |0 P:(DE-HGF)0 |a Abaurrea-Velasco, Clara |b 0 |e Corresponding author |
245 | _ | _ | |a Vesicles with internal active filaments: self-organized propulsion controls shape, motility, and dynamical response |
260 | _ | _ | |a [London] |b IOP |c 2019 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1582101526_3360 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a Self-propulsion and navigation due to the sensing of environmental conditions --- such as durotaxis and chemotaxis --- are remarkable properties of biological cells that cannot be modeled by single-component self-propelled particles. Therefore, we introduce and study "flexocytes", deformable vesicles with enclosed attached self-propelled pushing and pulling filaments that align due to steric and membrane-mediated interactions. Using computer simulations in two dimensions, we show that the membrane deforms under the propulsion forces and forms shapes mimicking motile biological cells, such as keratocytes and neutrophils. When interacting with walls or with interfaces between different substrates, the internal structure of a flexocyte reorganizes, resulting in a preferred angle of reflection or deflection, respectively. We predict a correlation between motility patterns, shapes, characteristics of the internal forces, and the response to micropatterned substrates and external stimuli. We propose that engineered flexocytes with desired mechanosensitive capabilities enable the construction of soft-matter microbots. |
536 | _ | _ | |0 G:(DE-HGF)POF3-553 |a 553 - Physical Basis of Diseases (POF3-553) |c POF3-553 |f POF III |x 0 |
536 | _ | _ | |0 G:(DE-Juel1)jiff26_20110501 |a Hydrodynamics of Active Biological Systems (jiff26_20110501) |c jiff26_20110501 |f Hydrodynamics of Active Biological Systems |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |0 P:(DE-Juel1)130514 |a Auth, Thorsten |b 1 |e Corresponding author |
700 | 1 | _ | |0 P:(DE-Juel1)130665 |a Gompper, Gerhard |b 2 |e Corresponding author |
773 | _ | _ | |0 PERI:(DE-600)1464444-7 |a 10.1088/1367-2630/ab5c70 |p 123024 |t New journal of physics |v 21 |x 1367-2630 |y 2019 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/867555/files/8134432_0.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/867555/files/8134432_0.pdf?subformat=pdfa |x pdfa |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/867555/files/Abaurrea-Velasco_2019_New_J._Phys._21_123024.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/867555/files/Abaurrea-Velasco_2019_New_J._Phys._21_123024.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:867555 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)130514 |a Forschungszentrum Jülich |b 1 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)130665 |a Forschungszentrum Jülich |b 2 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF3-553 |1 G:(DE-HGF)POF3-550 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |v Physical Basis of Diseases |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |a Creative Commons Attribution CC BY 3.0 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b NEW J PHYS : 2017 |
915 | _ | _ | |0 StatID:(DE-HGF)0501 |2 StatID |a DBCoverage |b DOAJ Seal |
915 | _ | _ | |0 StatID:(DE-HGF)0500 |2 StatID |a DBCoverage |b DOAJ |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |
915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l no |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-2-20110106 |k ICS-2 |l Theorie der Weichen Materie und Biophysik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 1 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ICS-2-20110106 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IBI-5-20200312 |
981 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|