001     867890
005     20240711085650.0
024 7 _ |a 10.1111/jace.16935
|2 doi
024 7 _ |a 0002-7820
|2 ISSN
024 7 _ |a 1551-2916
|2 ISSN
024 7 _ |a 2128/24257
|2 Handle
024 7 _ |a WOS:000501902800001
|2 WOS
037 _ _ |a FZJ-2019-06492
082 _ _ |a 660
100 1 _ |a Gonzalez‐Julian, Jesus
|0 P:(DE-Juel1)162271
|b 0
|e Corresponding author
245 _ _ |a Cr 2 AlC MAX phase as bond coat for thermal barrier coatings: Processing, testing under thermal gradient loading, and future challenges
260 _ _ |a Westerville, Ohio
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1580914678_7541
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cr$_2$AlC layers with thickness up to 100 µm were deposited by high‐velocity‐atmospheric plasma spray (HV‐APS) on Inconel 738 substrates to analyze the potential of MAX phases as bond coat in thermal barrier coating systems (TBCs). The deposited Cr$_2$AlC layers showed high purity with theoretical densities up to 93%, although some secondary phases were detected after the deposition process. On top of this MAX phase layer, a porous yttria‐stabilized zirconia (YSZ) was deposited by atmospheric plasma spraying. The system was tested under realistic thermal loading conditions using a burner rig facility, achieving surface and substrate temperatures of 1400°C and 1050°C, respectively. The system failed after 745 cycles mainly for three reasons: (i) open porosity of the bond coat layer, (ii) oxidation of secondary phases, and (iii) inter‐diffusion. Nevertheless, these results show a high potential of Cr$_2$AlC and other Al‐based MAX phases as bond coat material for high‐temperature applications. Furthermore, future challenges to transfer MAX phases as eventual bond coat or protective layer are discussed.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mauer, Georg
|0 P:(DE-Juel1)129633
|b 1
|u fzj
700 1 _ |a Sebold, Doris
|0 P:(DE-Juel1)129662
|b 2
|u fzj
700 1 _ |a Mack, Daniel E.
|0 P:(DE-Juel1)129630
|b 3
700 1 _ |a Vassen, Robert
|0 P:(DE-Juel1)129670
|b 4
|u fzj
773 _ _ |a 10.1111/jace.16935
|g p. jace.16935
|0 PERI:(DE-600)2008170-4
|n 4
|p 2362-2375
|t Journal of the American Ceramic Society
|v 103
|y 2020
|x 1551-2916
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/867890/files/Gonzalez-Julian_et_al-2020-Journal_of_the_American_Ceramic_Society.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/867890/files/Gonzalez-Julian_et_al-2020-Journal_of_the_American_Ceramic_Society.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:867890
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162271
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129633
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129630
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CERAM SOC : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21