000868011 001__ 868011
000868011 005__ 20210130004021.0
000868011 020__ $$a978-84-121101-1-1
000868011 037__ $$aFZJ-2019-06604
000868011 041__ $$aEnglish
000868011 1001_ $$0P:(DE-Juel1)132274$$aSutmann, Godehard$$b0$$eCorresponding author$$ufzj
000868011 1112_ $$aVI International Conference on Particle-based Methods–Fundamentals and Applications$$cBarcelona$$d2019-10-28 - 2019-10-30$$wSpain
000868011 245__ $$aMulti-Level Load Balancing for Parallel Particle Simulations
000868011 260__ $$aBarcelona, Spain$$bInternational Centre for Numerical Methods in Engineering (CIMNE)$$c2019
000868011 300__ $$a80 - 92
000868011 3367_ $$2ORCID$$aCONFERENCE_PAPER
000868011 3367_ $$033$$2EndNote$$aConference Paper
000868011 3367_ $$2BibTeX$$aINPROCEEDINGS
000868011 3367_ $$2DRIVER$$aconferenceObject
000868011 3367_ $$2DataCite$$aOutput Types/Conference Paper
000868011 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1576756576_22299
000868011 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000868011 520__ $$aIdeas from multi-level relaxation methods are combined with loadbalancing techniques to achieve a convergence acceleration for a homogeneous workload distribution over a given set of processors when the underlying workfunction is inhomogeneously distributed in space. The algorithm is based on an orthogonal recursive bisection approach which is evaluated via a hierarchically refined coarse integration.The method only requires a minimal information transfer across processors during the tree traversal steps. It is described of how to partition the system of processors to geometrical space, when global information is needed for the spatial tesselation.
000868011 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000868011 8564_ $$uhttps://congress.cimne.com/particles2019/frontal/doc/Ebook_Particles_2019.pdf
000868011 909CO $$ooai:juser.fz-juelich.de:868011$$pVDB
000868011 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132274$$aForschungszentrum Jülich$$b0$$kFZJ
000868011 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000868011 9141_ $$y2019
000868011 920__ $$lyes
000868011 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000868011 980__ $$acontrib
000868011 980__ $$aVDB
000868011 980__ $$acontb
000868011 980__ $$aI:(DE-Juel1)JSC-20090406
000868011 980__ $$aUNRESTRICTED