000868011 001__ 868011 000868011 005__ 20210130004021.0 000868011 020__ $$a978-84-121101-1-1 000868011 037__ $$aFZJ-2019-06604 000868011 041__ $$aEnglish 000868011 1001_ $$0P:(DE-Juel1)132274$$aSutmann, Godehard$$b0$$eCorresponding author$$ufzj 000868011 1112_ $$aVI International Conference on Particle-based Methods–Fundamentals and Applications$$cBarcelona$$d2019-10-28 - 2019-10-30$$wSpain 000868011 245__ $$aMulti-Level Load Balancing for Parallel Particle Simulations 000868011 260__ $$aBarcelona, Spain$$bInternational Centre for Numerical Methods in Engineering (CIMNE)$$c2019 000868011 300__ $$a80 - 92 000868011 3367_ $$2ORCID$$aCONFERENCE_PAPER 000868011 3367_ $$033$$2EndNote$$aConference Paper 000868011 3367_ $$2BibTeX$$aINPROCEEDINGS 000868011 3367_ $$2DRIVER$$aconferenceObject 000868011 3367_ $$2DataCite$$aOutput Types/Conference Paper 000868011 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1576756576_22299 000868011 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb 000868011 520__ $$aIdeas from multi-level relaxation methods are combined with loadbalancing techniques to achieve a convergence acceleration for a homogeneous workload distribution over a given set of processors when the underlying workfunction is inhomogeneously distributed in space. The algorithm is based on an orthogonal recursive bisection approach which is evaluated via a hierarchically refined coarse integration.The method only requires a minimal information transfer across processors during the tree traversal steps. It is described of how to partition the system of processors to geometrical space, when global information is needed for the spatial tesselation. 000868011 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000868011 8564_ $$uhttps://congress.cimne.com/particles2019/frontal/doc/Ebook_Particles_2019.pdf 000868011 909CO $$ooai:juser.fz-juelich.de:868011$$pVDB 000868011 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132274$$aForschungszentrum Jülich$$b0$$kFZJ 000868011 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000868011 9141_ $$y2019 000868011 920__ $$lyes 000868011 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000868011 980__ $$acontrib 000868011 980__ $$aVDB 000868011 980__ $$acontb 000868011 980__ $$aI:(DE-Juel1)JSC-20090406 000868011 980__ $$aUNRESTRICTED