001     868151
005     20240712101011.0
024 7 _ |2 doi
|a 10.5194/acp-20-3333-2020
024 7 _ |2 ISSN
|a 1680-7316
024 7 _ |2 ISSN
|a 1680-7324
024 7 _ |2 Handle
|a 2128/24637
024 7 _ |2 altmetric
|a altmetric:77936945
024 7 _ |2 WOS
|a WOS:000521593900003
037 _ _ |a FZJ-2019-06725
082 _ _ |a 550
100 1 _ |0 P:(DE-Juel1)166537
|a Novelli, Anna
|b 0
|e Corresponding author
245 _ _ |a Importance of isomerization reactions for OH radical regeneration from the photo-oxidation of isoprene investigated in the atmospheric simulation chamber SAPHIR
260 _ _ |a Katlenburg-Lindau
|b EGU
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1585830425_13540
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Theoretical, laboratory, and chamber studies have shown fast regeneration of the hydroxyl radical (OH) in the photochemistry of isoprene, largely due to unimolecular reactions which were previously thought not to be important under atmospheric conditions. Based on early field measurements, nearly complete regeneration was hypothesized for a wide range of tropospheric conditions, including areas such as the rainforest where slow regeneration of OH radicals is expected due to low concentrations of nitric oxide (NO). In this work the OH regeneration in isoprene oxidation is directly quantified for the first time through experiments covering a wide range of atmospherically relevant NO levels (between 0.15 and 2 ppbv – parts per billion by volume) in the atmospheric simulation chamber SAPHIR. These conditions cover remote areas partially influenced by anthropogenic NO emissions, giving a regeneration efficiency of OH close to 1, and areas like the Amazonian rainforest with very low NO, resulting in a surprisingly high regeneration efficiency of 0.5, i.e. a factor of 2 to 3 higher than explainable in the absence of unimolecular reactions. The measured radical concentrations were compared to model calculations, and the best agreement was observed when at least 50 % of the total loss of isoprene peroxy radicals conformers (weighted by their abundance) occurs via isomerization reactions for NO lower than 0.2 ppbv. For these levels of NO, up to 50 % of the OH radicals are regenerated from the products of the 1,6 α-hydroxy-hydrogen shift (1,6-H shift) of Z-δ-RO2 radicals through the photolysis of an unsaturated hydroperoxy aldehyde (HPALD) and/or through the fast aldehydic hydrogen shift (rate constant ∼10 s−1 at 300 K) in di-hydroperoxy carbonyl peroxy radicals (di-HPCARP-RO2), depending on their relative yield. The agreement between all measured and modelled trace gases (hydroxyl, hydroperoxy, and organic peroxy radicals, carbon monoxide, and the sum of methyl vinyl ketone, methacrolein, and hydroxyl hydroperoxides) is nearly independent of the adopted yield of HPALD and di-HPCARP-RO2 as both degrade relatively fast (<1 h), forming the OH radical and CO among other products. Taking into consideration this and earlier isoprene studies, considerable uncertainties remain on the distribution of oxygenated products, which affect radical levels and organic aerosol downwind of unpolluted isoprene-dominated regions.
536 _ _ |0 G:(DE-HGF)POF3-243
|a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|c POF3-243
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)167140
|a Vereecken, Luc
|b 1
700 1 _ |0 P:(DE-Juel1)2693
|a Bohn, Birger
|b 2
700 1 _ |0 P:(DE-Juel1)16317
|a Dorn, Hans-Peter
|b 3
700 1 _ |0 P:(DE-Juel1)165645
|a Gkatzelis, Georgios I.
|b 4
700 1 _ |0 P:(DE-Juel1)16326
|a Hofzumahaus, Andreas
|b 5
700 1 _ |0 P:(DE-Juel1)16342
|a Holland, Frank
|b 6
|u fzj
700 1 _ |0 P:(DE-Juel1)171432
|a Reimer, David
|b 7
|u fzj
700 1 _ |0 P:(DE-Juel1)16347
|a Rohrer, Franz
|b 8
|u fzj
700 1 _ |0 P:(DE-Juel1)173788
|a Rosanka, Simon
|b 9
700 1 _ |0 P:(DE-Juel1)167439
|a Taraborrelli, Domenico
|b 10
700 1 _ |0 P:(DE-Juel1)5344
|a Tillmann, Ralf
|b 11
|u fzj
700 1 _ |0 P:(DE-Juel1)2367
|a Wegener, Robert
|b 12
700 1 _ |0 P:(DE-Juel1)159354
|a Yu, Zhujun
|b 13
700 1 _ |0 P:(DE-Juel1)4528
|a Kiendler-Scharr, Astrid
|b 14
700 1 _ |0 P:(DE-Juel1)16324
|a Wahner, Andreas
|b 15
700 1 _ |0 P:(DE-Juel1)7363
|a Fuchs, Hendrik
|b 16
773 _ _ |0 PERI:(DE-600)2069847-1
|a 10.5194/acp-20-3333-2020
|g Vol. 20, no. 6, p. 3333 - 3355
|n 6
|p 1-32
|t Atmospheric chemistry and physics
|v 20
|x 1680-7316
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/868151/files/invoice_Helmholtz-PUC-2020-25.pdf
856 4 _ |u https://juser.fz-juelich.de/record/868151/files/acp-20-3333-2020.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/868151/files/invoice_Helmholtz-PUC-2020-25.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/868151/files/acp-20-3333-2020.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:868151
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)166537
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)167140
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)2693
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)16317
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165645
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)16326
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)16342
|a Forschungszentrum Jülich
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)171432
|a Forschungszentrum Jülich
|b 7
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)16347
|a Forschungszentrum Jülich
|b 8
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)173788
|a Forschungszentrum Jülich
|b 9
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)167439
|a Forschungszentrum Jülich
|b 10
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)5344
|a Forschungszentrum Jülich
|b 11
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)2367
|a Forschungszentrum Jülich
|b 12
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)159354
|a Forschungszentrum Jülich
|b 13
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)4528
|a Forschungszentrum Jülich
|b 14
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)16324
|a Forschungszentrum Jülich
|b 15
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)7363
|a Forschungszentrum Jülich
|b 16
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-243
|1 G:(DE-HGF)POF3-240
|2 G:(DE-HGF)POF3-200
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|v Tropospheric trace substances and their transformation processes
|x 0
914 1 _ |y 2019
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b ATMOS CHEM PHYS : 2017
915 _ _ |0 StatID:(DE-HGF)0501
|2 StatID
|a DBCoverage
|b DOAJ Seal
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b DOAJ : Peer review
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ATMOS CHEM PHYS : 2017
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21