001     868431
005     20240711113506.0
024 7 _ |a 10.1002/ctpp.201900149
|2 doi
024 7 _ |a 0005-8025
|2 ISSN
024 7 _ |a 0863-1042
|2 ISSN
024 7 _ |a 1521-3986
|2 ISSN
024 7 _ |a 2128/25516
|2 Handle
024 7 _ |a WOS:000504431800001
|2 WOS
037 _ _ |a FZJ-2020-00026
082 _ _ |a 570
100 1 _ |a Romazanov, Juri
|0 P:(DE-Juel1)165905
|b 0
|e Corresponding author
245 _ _ |a First Monte-Carlo modelling of global beryllium migration in ITER using ERO2.0
260 _ _ |a Weinheim
|c 2019
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1616684644_14590
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a ERO2.0 is a recently developed Monte‐Carlo code for modelling global erosion and redeposition in fusion devices. We report here on the code's application to ITER for studying the erosion of the beryllium (Be) first wall armour under burning plasma steady state diverted conditions. An important goal of the study is to provide synthetic signals for the design of two key diagnostics: the main chamber visible spectroscopy and the laser in‐vessel viewing systems. The simulations are performed using toroidally symmetric plasma backgrounds obtained by combining SOLPS simulations extended to the wall using the OSM‐EIRENE‐DIVIMP edge code package. These are then further combined with a shadowing model using magnetic field line tracing to provide a three‐dimensional correction for the flux patterns. The resulting plasma wetted area, which amounts to ∼10% of the total first wall area, is in excellent agreement with shadowing calculations obtained with the SMITER field line tracing code. The simulations reveal that the main Be erosion zones are located in regions intersected by the secondary separatrix, in particular the upper Be panels, which are close to the secondary X‐point. For the particular high‐density Q = 10 background plasma case studied here, ∼80% of the eroded Be is found to re‐deposit on main chamber surfaces. The rest migrates in almost equal parts to the inner and outer divertor and is deposited close to the strike lines.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
536 _ _ |a 3D Monte-Carlo simulations of plasma-wall interaction and impurity transport in fusion devices (jiek43_20190501)
|0 G:(DE-Juel1)jiek43_20190501
|c jiek43_20190501
|f 3D Monte-Carlo simulations of plasma-wall interaction and impurity transport in fusion devices
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Brezinsek, Sebastijan
|0 P:(DE-Juel1)129976
|b 1
700 1 _ |a Kirschner, Andreas
|0 P:(DE-Juel1)2620
|b 2
700 1 _ |a Borodin, Dmitriy
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eksaeva, Alina
|0 P:(DE-Juel1)171509
|b 4
700 1 _ |a Pitts, Richard A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lisgo, Steven W.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Anand, Himank
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Veshchev, Evgeny
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Neverov, Vlad S.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kukushkin, Alexander B.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Alekseev, Andrey G.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Linsmeier, Christian
|0 P:(DE-Juel1)157640
|b 12
773 _ _ |a 10.1002/ctpp.201900149
|g p. e201900149 -
|0 PERI:(DE-600)2018082-2
|n 5-6
|p e201900149 -
|t Contributions to plasma physics
|v 60
|y 2020
|x 0863-1042
856 4 _ |u https://juser.fz-juelich.de/record/868431/files/ctpp.201900149.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/868431/files/ctpp.201900149.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:868431
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165905
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)2620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171509
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)157640
913 1 _ |a DE-HGF
|b Energie
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Plasma-Wall-Interaction
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CONTRIB PLASM PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21