000868441 001__ 868441
000868441 005__ 20240619083558.0
000868441 0247_ $$2doi$$a10.1038/s41598-019-56729-9
000868441 0247_ $$2Handle$$a2128/23803
000868441 0247_ $$2altmetric$$aaltmetric:73442634
000868441 0247_ $$2pmid$$apmid:31892707
000868441 0247_ $$2WOS$$aWOS:000508985300012
000868441 037__ $$aFZJ-2020-00035
000868441 082__ $$a600
000868441 1001_ $$0P:(DE-HGF)0$$aGarlea, Ioana C.$$b0$$eCorresponding author
000868441 245__ $$aColloidal Liquid Crystals Confinedto Synthetic Tactoids
000868441 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019
000868441 3367_ $$2DRIVER$$aarticle
000868441 3367_ $$2DataCite$$aOutput Types/Journal article
000868441 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1578504919_1777
000868441 3367_ $$2BibTeX$$aARTICLE
000868441 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000868441 3367_ $$00$$2EndNote$$aJournal Article
000868441 520__ $$aWhen a liquid crystal forming particles are confined to a spatial volume with dimensions comparable to that of their own size, they face a complex trade-off between their global tendency to align and the local constraints imposed by the boundary conditions. This interplay may lead to a non-trivial orientational patterns that strongly depend on the geometry of the confining volume. This novel regime of liquid crystalline behavior can be probed with colloidal particles that are macro-aggregates of biomolecules. Here we study director fields of filamentous fd-viruses in quasi-2D lens-shaped chambers that mimic the shape of tactoids, the nematic droplets that form during isotropic-nematic phase separation. By varying the size and aspect ratio of the chambers we force these particles into confinements that vary from circular to extremely spindle-like shapes and observe the director field using fluorescence microscopy. In the resulting phase diagram, next to configurations predicted earlier for 3D tactoids, we find a number of novel configurations. Using Monte Carlo Simulations, we show that these novel states are metastable, yet long-lived. Their multiplicity can be explained by the co-existence of multiple dynamic relaxation pathways leading to the final stable states
000868441 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000868441 7001_ $$0P:(DE-HGF)0$$aDammone, Oliver$$b1
000868441 7001_ $$0P:(DE-HGF)0$$aAlvarado, Jose$$b2
000868441 7001_ $$0P:(DE-HGF)0$$aNooteboom, Valerie$$b3
000868441 7001_ $$0P:(DE-HGF)0$$aJia, Yunfei$$b4
000868441 7001_ $$0P:(DE-HGF)0$$aKoenderink, Gijsje H.$$b5
000868441 7001_ $$0P:(DE-HGF)0$$aAarts, Dirk G. A. L.$$b6
000868441 7001_ $$0P:(DE-Juel1)130797$$aLettinga, M. P.$$b7$$eCorresponding author
000868441 7001_ $$0P:(DE-HGF)0$$aMulder, Bela M.$$b8
000868441 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-019-56729-9$$p20391$$tScientific reports$$v9$$x2045-2322$$y2019
000868441 8564_ $$uhttps://juser.fz-juelich.de/record/868441/files/Invoice_5500005652%20.pdf$$yRestricted
000868441 8564_ $$uhttps://juser.fz-juelich.de/record/868441/files/Garlea2019.pdf$$yOpenAccess
000868441 8564_ $$uhttps://juser.fz-juelich.de/record/868441/files/Invoice_5500005652%20.pdf?subformat=pdfa$$xpdfa$$yRestricted
000868441 8564_ $$uhttps://juser.fz-juelich.de/record/868441/files/Garlea2019.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000868441 8767_ $$85500005652$$92019-12-19$$d2020-01-07$$eAPC$$jZahlung erfolgt$$p3ab329b2-e055-4acb-9309-5$$zGesplittete Rng, daher per KST
000868441 909CO $$ooai:juser.fz-juelich.de:868441$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000868441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130797$$aForschungszentrum Jülich$$b7$$kFZJ
000868441 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000868441 9141_ $$y2019
000868441 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000868441 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000868441 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000868441 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000868441 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000868441 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000868441 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000868441 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000868441 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000868441 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000868441 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000868441 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000868441 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000868441 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000868441 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000868441 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000868441 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000868441 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000868441 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000868441 920__ $$lyes
000868441 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie$$x0
000868441 9801_ $$aAPC
000868441 9801_ $$aFullTexts
000868441 980__ $$ajournal
000868441 980__ $$aVDB
000868441 980__ $$aUNRESTRICTED
000868441 980__ $$aI:(DE-Juel1)ICS-3-20110106
000868441 980__ $$aAPC