Home > Workflow collections > Publication Charges > Colloidal Liquid Crystals Confinedto Synthetic Tactoids > print |
001 | 868441 | ||
005 | 20240619083558.0 | ||
024 | 7 | _ | |a 10.1038/s41598-019-56729-9 |2 doi |
024 | 7 | _ | |a 2128/23803 |2 Handle |
024 | 7 | _ | |a altmetric:73442634 |2 altmetric |
024 | 7 | _ | |a pmid:31892707 |2 pmid |
024 | 7 | _ | |a WOS:000508985300012 |2 WOS |
037 | _ | _ | |a FZJ-2020-00035 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Garlea, Ioana C. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Colloidal Liquid Crystals Confinedto Synthetic Tactoids |
260 | _ | _ | |a [London] |c 2019 |b Macmillan Publishers Limited, part of Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1578504919_1777 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a When a liquid crystal forming particles are confined to a spatial volume with dimensions comparable to that of their own size, they face a complex trade-off between their global tendency to align and the local constraints imposed by the boundary conditions. This interplay may lead to a non-trivial orientational patterns that strongly depend on the geometry of the confining volume. This novel regime of liquid crystalline behavior can be probed with colloidal particles that are macro-aggregates of biomolecules. Here we study director fields of filamentous fd-viruses in quasi-2D lens-shaped chambers that mimic the shape of tactoids, the nematic droplets that form during isotropic-nematic phase separation. By varying the size and aspect ratio of the chambers we force these particles into confinements that vary from circular to extremely spindle-like shapes and observe the director field using fluorescence microscopy. In the resulting phase diagram, next to configurations predicted earlier for 3D tactoids, we find a number of novel configurations. Using Monte Carlo Simulations, we show that these novel states are metastable, yet long-lived. Their multiplicity can be explained by the co-existence of multiple dynamic relaxation pathways leading to the final stable states |
536 | _ | _ | |a 551 - Functional Macromolecules and Complexes (POF3-551) |0 G:(DE-HGF)POF3-551 |c POF3-551 |f POF III |x 0 |
700 | 1 | _ | |a Dammone, Oliver |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Alvarado, Jose |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Nooteboom, Valerie |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Jia, Yunfei |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Koenderink, Gijsje H. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Aarts, Dirk G. A. L. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Lettinga, M. P. |0 P:(DE-Juel1)130797 |b 7 |e Corresponding author |
700 | 1 | _ | |a Mulder, Bela M. |0 P:(DE-HGF)0 |b 8 |
773 | _ | _ | |a 10.1038/s41598-019-56729-9 |0 PERI:(DE-600)2615211-3 |p 20391 |t Scientific reports |v 9 |y 2019 |x 2045-2322 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/868441/files/Invoice_5500005652%20.pdf |y Restricted |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/868441/files/Garlea2019.pdf |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/868441/files/Invoice_5500005652%20.pdf?subformat=pdfa |y Restricted |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/868441/files/Garlea2019.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:868441 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)130797 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-551 |2 G:(DE-HGF)POF3-500 |v Functional Macromolecules and Complexes |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-3-20110106 |k ICS-3 |l Weiche Materie |x 0 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ICS-3-20110106 |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|