000872730 001__ 872730
000872730 005__ 20240712113233.0
000872730 0247_ $$2doi$$a10.1002/cite.201900174
000872730 0247_ $$2ISSN$$a0009-286X
000872730 0247_ $$2ISSN$$a1522-2640
000872730 0247_ $$2Handle$$a2128/24023
000872730 0247_ $$2WOS$$aWOS:000506937800001
000872730 037__ $$aFZJ-2020-00208
000872730 082__ $$a660
000872730 1001_ $$0P:(DE-Juel1)172903$$aTheuer, Trutz$$b0$$eCorresponding author
000872730 245__ $$aSustainable Syngas Production by High‐Temperature Co‐electrolysis
000872730 260__ $$aWeinheim$$bWiley-VCH Verl.$$c2020
000872730 3367_ $$2DRIVER$$aarticle
000872730 3367_ $$2DataCite$$aOutput Types/Journal article
000872730 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1579867637_5040
000872730 3367_ $$2BibTeX$$aARTICLE
000872730 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872730 3367_ $$00$$2EndNote$$aJournal Article
000872730 520__ $$aHigh‐temperature co‐electrolysis shows comparable performance to steam electrolysis. Current densities above 1 A cm−2 can be reached between 700 °C and 800 °C. Tailor‐made syngas is produced, mainly determined by the reactant ratio. The experimental results are supported by modeling. Durability tests with cathode‐supported cells show increased voltage degradation rates during electrolysis compared to fuel cell operation. Nickel depletion is found to be the main cause.
000872730 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000872730 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000872730 588__ $$aDataset connected to CrossRef
000872730 7001_ $$0P:(DE-Juel1)171824$$aSchäfer, Dominik$$b1
000872730 7001_ $$0P:(DE-Juel1)171748$$aDittrich, Lucy$$b2
000872730 7001_ $$0P:(DE-Juel1)177600$$aNohl, Markus$$b3
000872730 7001_ $$0P:(DE-Juel1)166524$$aFoit, Severin$$b4
000872730 7001_ $$0P:(DE-Juel1)129828$$aBlum, Ludger$$b5
000872730 7001_ $$0P:(DE-Juel1)129952$$ade Haart, L. G. J.$$b6
000872730 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b7
000872730 773__ $$0PERI:(DE-600)2035041-7$$a10.1002/cite.201900174$$gp. cite.201900174$$n1-2$$p40-44$$tChemie - Ingenieur - Technik$$v92$$x1522-2640$$y2020
000872730 8564_ $$uhttps://juser.fz-juelich.de/record/872730/files/Theuer_et_al-2020-Chemie_Ingenieur_Technik.pdf$$yOpenAccess
000872730 8564_ $$uhttps://juser.fz-juelich.de/record/872730/files/Theuer_et_al-2020-Chemie_Ingenieur_Technik.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872730 8767_ $$92020-01-09$$d2020-01-15$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$pcite.201900174
000872730 909CO $$ooai:juser.fz-juelich.de:872730$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000872730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172903$$aForschungszentrum Jülich$$b0$$kFZJ
000872730 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172903$$aRWTH Aachen$$b0$$kRWTH
000872730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171824$$aForschungszentrum Jülich$$b1$$kFZJ
000872730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171748$$aForschungszentrum Jülich$$b2$$kFZJ
000872730 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)171748$$aRWTH Aachen$$b2$$kRWTH
000872730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177600$$aForschungszentrum Jülich$$b3$$kFZJ
000872730 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)177600$$aRWTH Aachen$$b3$$kRWTH
000872730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166524$$aForschungszentrum Jülich$$b4$$kFZJ
000872730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129828$$aForschungszentrum Jülich$$b5$$kFZJ
000872730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129952$$aForschungszentrum Jülich$$b6$$kFZJ
000872730 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b7$$kFZJ
000872730 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b7$$kRWTH
000872730 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000872730 9141_ $$y2020
000872730 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872730 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000872730 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872730 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000872730 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM-ING-TECH : 2017
000872730 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872730 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872730 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872730 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872730 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872730 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872730 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000872730 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872730 920__ $$lyes
000872730 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000872730 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x1
000872730 9801_ $$aAPC
000872730 9801_ $$aFullTexts
000872730 980__ $$ajournal
000872730 980__ $$aVDB
000872730 980__ $$aUNRESTRICTED
000872730 980__ $$aI:(DE-Juel1)IEK-9-20110218
000872730 980__ $$aI:(DE-Juel1)IEK-14-20191129
000872730 980__ $$aAPC
000872730 981__ $$aI:(DE-Juel1)IET-1-20110218
000872730 981__ $$aI:(DE-Juel1)IET-4-20191129