| 001 | 872832 | ||
| 005 | 20240712084533.0 | ||
| 024 | 7 | _ | |a 10.1002/pip.3244 |2 doi |
| 024 | 7 | _ | |a 1062-7995 |2 ISSN |
| 024 | 7 | _ | |a 1099-159X |2 ISSN |
| 024 | 7 | _ | |a 2128/25288 |2 Handle |
| 024 | 7 | _ | |a altmetric:74324460 |2 altmetric |
| 024 | 7 | _ | |a WOS:000507529600001 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-00302 |
| 082 | _ | _ | |a 690 |
| 100 | 1 | _ | |a Pomaska, Manuel |0 P:(DE-Juel1)162141 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Transparent silicon carbide/tunnel SiO$_{2}$ passivation for c‐Si solar cell front side: Enabling J$_{sc}$ > 42 mA/cm 2 and i V$_{oc}$ of 742 mV |
| 260 | _ | _ | |a Chichester |c 2020 |b Wiley |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1594898965_23652 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a N‐type microcrystalline silicon carbide (μc‐SiC:H(n)) is a wide bandgap material that is very promising for the use on the front side of crystalline silicon (c‐Si) solar cells. It offers a high optical transparency and a suitable refractive index that reduces parasitic absorption and reflection losses, respectively. In this work, we investigate the potential of hot wire chemical vapor deposition (HWCVD)–grown μc‐SiC:H(n) for c‐Si solar cells with interdigitated back contacts (IBC). We demonstrate outstanding passivation quality of μc‐SiC:H(n) on tunnel oxide (SiO2)–passivated c‐Si with an implied open‐circuit voltage of 742 mV and a saturation current density of 3.6 fA/cm2. This excellent passivation quality is achieved directly after the HWCVD deposition of μc‐SiC:H(n) at 250°C heater temperature without any further treatments like recrystallization or hydrogenation. Additionally, we developed magnesium fluoride (MgF2)/silicon nitride (SiNx:H)/silicon carbide antireflection coatings that reduce optical losses on the front side to only 0.47 mA/cm2 with MgF2/SiNx:H/μc‐SiC:H(n) and 0.62 mA/cm2 with MgF2/μc‐SiC:H(n). Finally, calculations with Sentaurus TCAD simulation using MgF2/μc‐SiC:H(n)/SiO2/c‐Si as front side layer stack in an IBC solar cell reveal a short‐circuit current density of 42.2 mA/cm2, an open‐circuit voltage of 738 mV, a fill factor of 85.2% and a maximum power conversion efficiency of 26.6%. |
| 536 | _ | _ | |a 121 - Solar cells of the next generation (POF3-121) |0 G:(DE-HGF)POF3-121 |c POF3-121 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Köhler, Malte |0 P:(DE-Juel1)165230 |b 1 |
| 700 | 1 | _ | |a Procel Moya, Paul |0 0000-0003-4997-3551 |b 2 |
| 700 | 1 | _ | |a Zamchiy, Alexandr |0 P:(DE-Juel1)179571 |b 3 |
| 700 | 1 | _ | |a Singh, Aryak |0 P:(DE-Juel1)164370 |b 4 |u fzj |
| 700 | 1 | _ | |a Kim, Do Yun |0 P:(DE-Juel1)167158 |b 5 |
| 700 | 1 | _ | |a Isabella, Olindo |0 0000-0001-7673-0163 |b 6 |
| 700 | 1 | _ | |a Zeman, Miro |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Li, Shenghao |0 P:(DE-Juel1)174415 |b 8 |u fzj |
| 700 | 1 | _ | |a Qiu, Kaifu |0 P:(DE-Juel1)178049 |b 9 |u fzj |
| 700 | 1 | _ | |a Eberst, Alexander |0 P:(DE-Juel1)178007 |b 10 |u fzj |
| 700 | 1 | _ | |a Smirnov, Vladimir |0 P:(DE-Juel1)130297 |b 11 |u fzj |
| 700 | 1 | _ | |a Finger, Friedhelm |0 P:(DE-Juel1)130238 |b 12 |u fzj |
| 700 | 1 | _ | |a Rau, Uwe |0 P:(DE-Juel1)130285 |b 13 |u fzj |
| 700 | 1 | _ | |a Ding, Kaining |0 P:(DE-Juel1)130233 |b 14 |u fzj |
| 773 | _ | _ | |a 10.1002/pip.3244 |g p. pip.3244 |0 PERI:(DE-600)2023295-0 |n 4 |p 321 - 327 |t Progress in photovoltaics |v 28 |y 2020 |x 1099-159X |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/872832/files/pip.3244.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/872832/files/pip.3244.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:872832 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)162141 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)165230 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)164370 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)167158 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)174415 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)178049 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)178007 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)130297 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)130238 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)130285 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)130233 |
| 913 | 1 | _ | |a DE-HGF |l Erneuerbare Energien |1 G:(DE-HGF)POF3-120 |0 G:(DE-HGF)POF3-121 |2 G:(DE-HGF)POF3-100 |v Solar cells of the next generation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PROG PHOTOVOLTAICS : 2017 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PROG PHOTOVOLTAICS : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |x 0 |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
| 980 | _ | _ | |a APC |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|