000873062 001__ 873062
000873062 005__ 20240610121244.0
000873062 0247_ $$2doi$$a10.1088/1361-6668/ab7053
000873062 0247_ $$2Handle$$a2128/24364
000873062 0247_ $$2WOS$$aWOS:000537735500002
000873062 037__ $$aFZJ-2020-00511
000873062 082__ $$a530
000873062 1001_ $$0P:(DE-Juel1)130633$$aFaley, M. I.$$b0$$eCorresponding author
000873062 245__ $$aMoRe/YBCO Josephson junctions and π -loops
000873062 260__ $$aBristol$$bIOP Publ.$$c2020
000873062 3367_ $$2DRIVER$$aarticle
000873062 3367_ $$2DataCite$$aOutput Types/Journal article
000873062 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582112580_3360
000873062 3367_ $$2BibTeX$$aARTICLE
000873062 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873062 3367_ $$00$$2EndNote$$aJournal Article
000873062 520__ $$aWe have developed Josephson junctions between the d-wave superconductor YBa2Cu3O7−x (YBCO) and the s-wave Mo0.6Re0.4 (MoRe) alloy superconductor (ds-JJs). Such ds Josephson junctions are of interest for superconducting electronics making use of incorporated π-phase shifts. The I(V)-characteristics of the ds-JJs demonstrate a twice larger critical current along the [100] axis of the YBCO film compared to similarly-oriented ds-JJs made with a Nb top electrode. The characteristic voltage I c R n of the YBCO–Au–MoRe ds-JJs is 750 μV at 4.2 K. The ds-JJs that are oriented along the [100] or [010] axes of the YBCO film exhibit a 200 times higher critical current than similar ds-JJs oriented along the [110] axis of the same YBCO film. A critical current density J c = 20 kA cm−2 at 4.2 K was achieved. Different layouts of π-loops based on the novel ds-JJs were arranged in various mutual coupling configurations. Spontaneous persistent currents in the π-loops were investigated using scanning SQUID microscopy. Magnetic states of the π-loops were manipulated by currents in integrated bias lines. Higher flux states up to ±2.5Φ0 were induced and stabilized in the π-loops. Crossover temperatures between thermally activated and quantum tunneling switching processes in the ds-JJs were estimated. The demonstrated ability to stabilise and manipulate states of π-loops paves the way towards new computing concepts such as quantum annealing computing.
000873062 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000873062 588__ $$aDataset connected to CrossRef
000873062 7001_ $$0P:(DE-HGF)0$$aReith, P.$$b1
000873062 7001_ $$0P:(DE-HGF)0$$aSatrya, C. D.$$b2
000873062 7001_ $$00000-0002-5317-0818$$aStolyarov, V. S.$$b3
000873062 7001_ $$0P:(DE-HGF)0$$aFolkers, B.$$b4
000873062 7001_ $$00000-0001-5085-5195$$aGolubov, A. A.$$b5
000873062 7001_ $$00000-0001-6109-8804$$aHilgenkamp, H.$$b6
000873062 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, R. E.$$b7
000873062 773__ $$0PERI:(DE-600)1361475-7$$a10.1088/1361-6668/ab7053$$gVol. 33, no. 4, p. 044005 -$$n4$$p044005 -$$tSuperconductor science and technology$$v33$$x0953-2048$$y2020
000873062 8564_ $$uhttps://juser.fz-juelich.de/record/873062/files/Faley_2020_Supercond._Sci._Technol._33_044005.pdf$$yOpenAccess
000873062 8564_ $$uhttps://juser.fz-juelich.de/record/873062/files/Faley_2020_Supercond._Sci._Technol._33_044005.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873062 8767_ $$92020-01-24$$d2020-01-24$$eHybrid-OA$$jOffsetting$$lOffsetting: IOP$$pSUST-103580.R1
000873062 909CO $$ooai:juser.fz-juelich.de:873062$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000873062 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130633$$aForschungszentrum Jülich$$b0$$kFZJ
000873062 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ
000873062 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000873062 9141_ $$y2020
000873062 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000873062 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873062 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873062 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUPERCOND SCI TECH : 2017
000873062 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873062 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873062 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873062 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873062 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873062 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873062 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873062 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000873062 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873062 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000873062 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873062 920__ $$lyes
000873062 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000873062 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000873062 9801_ $$aAPC
000873062 9801_ $$aFullTexts
000873062 980__ $$ajournal
000873062 980__ $$aVDB
000873062 980__ $$aUNRESTRICTED
000873062 980__ $$aI:(DE-Juel1)PGI-5-20110106
000873062 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000873062 980__ $$aAPC
000873062 981__ $$aI:(DE-Juel1)ER-C-1-20170209