001     873633
005     20240313094942.0
024 7 _ |a 10.1109/NER.2019.8716891
|2 doi
024 7 _ |a WOS:000469933200299
|2 WOS
037 _ _ |a FZJ-2020-00876
100 1 _ |a He, Xu
|0 P:(DE-Juel1)171331
|b 0
|u fzj
111 2 _ |a 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)
|c San Francisco
|d 2019-03-20 - 2019-03-23
|w CA
245 _ _ |a Reservoir Transfer on Analog Neuromorphic Hardware
260 _ _ |c 2019
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1580903721_16416
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
500 _ _ |a Tianlin Liu was supported by the FZJ through the project SMARTSTART Computational Neuroscience, DB001423.
520 _ _ |a Analog, unclocked, spiking neuromorphic microchips open new perspectives for implantable or wearable biosensors and biocontrollers, due to their low energy consumption and heat dissipation. However, the challenges from a computational point of view are formidable. Here we outline our solutions to realize the reservoir computing paradigm on such hardware and address the combined problems of low bit resolution, device mismatch, approximate neuron models, and timescale mismatch. The main contribution is a computational scheme, called Reservoir Transfer, which enables us to transfer the dynamical properties of a well-performing neural network which has been optimized on a digital computer, onto neuromorphic hardware that displays the abovementioned problematic properties. Here we present a case study of implementing an ECG heartbeat abnormality detector to showcase the proposed method.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a Smartstart - SMARTSTART Training Program in Computational Neuroscience (90251)
|0 G:(EU-Grant)90251
|c 90251
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Liu, Tianlin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hadaeghi, Fatemeh
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jaeger, Herbert
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1109/NER.2019.8716891
909 C O |o oai:juser.fz-juelich.de:873633
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171331
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 2
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21