000873802 001__ 873802
000873802 005__ 20240610121038.0
000873802 0247_ $$2doi$$a10.1088/2050-6120/ab7e0f
000873802 0247_ $$2Handle$$a2128/24640
000873802 0247_ $$2altmetric$$aaltmetric:77290745
000873802 0247_ $$2pmid$$apmid:32150730
000873802 0247_ $$2WOS$$aWOS:000521503100001
000873802 037__ $$aFZJ-2020-01007
000873802 082__ $$a530
000873802 1001_ $$0P:(DE-Juel1)144531$$aFan, Xiaoming$$b0$$eCorresponding author
000873802 245__ $$aSpatial filter and its application in three-dimensional single molecule localization microscopy
000873802 260__ $$aBristol$$bIOP Publ.$$c2020
000873802 3367_ $$2DRIVER$$aarticle
000873802 3367_ $$2DataCite$$aOutput Types/Journal article
000873802 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1585846502_12395
000873802 3367_ $$2BibTeX$$aARTICLE
000873802 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873802 3367_ $$00$$2EndNote$$aJournal Article
000873802 520__ $$aSingle molecule localization microscopy (SMLM) allows the imaging of cellular structures with resolutions five to ten times below the diffraction limit of optical microscopy. It was originally introduced as a two-dimensional technique based on the localization of single emitters as projection onto the x-y imaging plane. The determination of the axial position of a fluorescent emitter is only possible by additional information. Here we report a method (spatial filter SMLM (SFSMLM)) that allows to determine the axial positions of fluorescent molecules and nanoparticles on the nanometer scale by the usage of two spatial filters, which are placed in two otherwise identical emission detection channels. SFSMLM allows axial localization in a range of ca. 1.5 μm with a localization precision of 15 - 30 nm in axial direction. The technique was utilized for localizing and imaging small cellular structures – e.g. actin filaments, vesicles and mitochondria - in three dimensions.
000873802 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000873802 588__ $$aDataset connected to CrossRef
000873802 7001_ $$0P:(DE-Juel1)141764$$aHendriks, Johnny$$b1
000873802 7001_ $$0P:(DE-Juel1)161592$$aComini, Maddalena$$b2
000873802 7001_ $$0P:(DE-Juel1)131971$$aKatranidis, Alexandros$$b3$$ufzj
000873802 7001_ $$0P:(DE-Juel1)131957$$aBüldt, Georg$$b4
000873802 7001_ $$0P:(DE-Juel1)131924$$aGensch, Thomas$$b5$$eCorresponding author
000873802 773__ $$0PERI:(DE-600)2700785-6$$a10.1088/2050-6120/ab7e0f$$n2$$p025008$$tMethods and applications in fluorescence$$v8$$x2050-6120$$y2020
000873802 8564_ $$uhttps://juser.fz-juelich.de/record/873802/files/IOP_Gensch_Proof.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000873802 8564_ $$uhttps://juser.fz-juelich.de/record/873802/files/Fan_2020_Methods_Appl._Fluoresc._8_025008.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000873802 8564_ $$uhttps://juser.fz-juelich.de/record/873802/files/IOP_Gensch_Proof.pdf?subformat=pdfa$$xpdfa$$yOpenAccess$$zStatID:(DE-HGF)0510
000873802 8564_ $$uhttps://juser.fz-juelich.de/record/873802/files/Fan_2020_Methods_Appl._Fluoresc._8_025008.pdf?subformat=pdfa$$xpdfa$$yRestricted$$zStatID:(DE-HGF)0599
000873802 8767_ $$92020-02-11$$d2020-03-02$$eHybrid-OA$$jOffsetting$$lOffsetting: IOP$$pMAF-100677.R1$$zAccepted
000873802 909CO $$ooai:juser.fz-juelich.de:873802$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000873802 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131971$$aForschungszentrum Jülich$$b3$$kFZJ
000873802 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131957$$aForschungszentrum Jülich$$b4$$kFZJ
000873802 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131924$$aForschungszentrum Jülich$$b5$$kFZJ
000873802 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000873802 9141_ $$y2020
000873802 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873802 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000873802 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETHODS APPL FLUORES : 2017
000873802 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873802 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873802 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873802 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873802 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873802 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873802 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873802 920__ $$lyes
000873802 9201_ $$0I:(DE-Juel1)ICS-4-20110106$$kICS-4$$lZelluläre Biophysik$$x0
000873802 9201_ $$0I:(DE-Juel1)ICS-5-20110106$$kICS-5$$lMolekulare Biophysik$$x1
000873802 9801_ $$aAPC
000873802 9801_ $$aFullTexts
000873802 980__ $$ajournal
000873802 980__ $$aVDB
000873802 980__ $$aUNRESTRICTED
000873802 980__ $$aI:(DE-Juel1)ICS-4-20110106
000873802 980__ $$aI:(DE-Juel1)ICS-5-20110106
000873802 980__ $$aAPC
000873802 981__ $$aI:(DE-Juel1)IBI-1-20200312
000873802 981__ $$aI:(DE-Juel1)IBI-6-20200312
000873802 981__ $$aI:(DE-Juel1)ER-C-3-20170113