000873882 001__ 873882
000873882 005__ 20210315194458.0
000873882 0247_ $$2doi$$a10.1103/PhysRevLett.124.066401
000873882 0247_ $$2ISSN$$a0031-9007
000873882 0247_ $$2ISSN$$a1079-7114
000873882 0247_ $$2ISSN$$a1092-0145
000873882 0247_ $$2Handle$$a2128/24358
000873882 0247_ $$2altmetric$$aaltmetric:76544639
000873882 0247_ $$2pmid$$apmid:32109083
000873882 0247_ $$2WOS$$aWOS:000513240600008
000873882 037__ $$aFZJ-2020-01072
000873882 082__ $$a530
000873882 1001_ $$0P:(DE-Juel1)159381$$aNiu, Chengwang$$b0
000873882 245__ $$aAntiferromagnetic Topological Insulator with Nonsymmorphic Protection in Two Dimensions
000873882 260__ $$aCollege Park, Md.$$bAPS$$c2020
000873882 3367_ $$2DRIVER$$aarticle
000873882 3367_ $$2DataCite$$aOutput Types/Journal article
000873882 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615811966_31601
000873882 3367_ $$2BibTeX$$aARTICLE
000873882 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873882 3367_ $$00$$2EndNote$$aJournal Article
000873882 520__ $$aThe recent demonstration of topological states in antiferromagnets (AFMs) provides an exciting platform for exploring prominent physical phenomena and applications of antiferromagnetic spintronics. A famous example is the AFM topological insulator (TI) state, which, however, was still not observed in two dimensions. Using a tight-binding model and first-principles calculations, we show that, in contrast to previously observed AFM topological insulators in three dimensions, an AFM TI can emerge in two dimensions as a result of a nonsymmorphic symmetry that combines the twofold rotation symmetry and half-lattice translation. Based on the spin Chern number, Wannier charge centers, and gapless edge states analysis, we identify intrinsic AFM XMnY (X=Sr and Ba, Y=Sn and Pb) quintuple layers as experimentally feasible examples of predicted topological states with a stable crystal structure and giant magnitude of the nontrivial band gaps, reaching as much as 186 meV for SrMnPb, thereby promoting these systems as promising candidates for innovative spintronics applications.
000873882 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000873882 536__ $$0G:(DE-Juel1)jiff40_20190501$$aTopological transport in real materials from ab initio (jiff40_20190501)$$cjiff40_20190501$$fTopological transport in real materials from ab initio$$x1
000873882 588__ $$aDataset connected to CrossRef
000873882 7001_ $$0P:(DE-HGF)0$$aMao, Ning$$b1
000873882 7001_ $$0P:(DE-HGF)0$$aHuang, Baibiao$$b2
000873882 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b3
000873882 7001_ $$0P:(DE-HGF)0$$aDai, Ying$$b4$$eCorresponding author
000873882 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.124.066401$$gVol. 124, no. 6, p. 066401$$n6$$p066401$$tPhysical review letters$$v124$$x1079-7114$$y2020
000873882 8564_ $$uhttps://juser.fz-juelich.de/record/873882/files/AFM_Mn_0118.pdf$$yOpenAccess
000873882 8564_ $$uhttps://juser.fz-juelich.de/record/873882/files/PhysRevLett.124.066401.pdf$$yOpenAccess
000873882 8564_ $$uhttps://juser.fz-juelich.de/record/873882/files/AFM_Mn_0118.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873882 8564_ $$uhttps://juser.fz-juelich.de/record/873882/files/PhysRevLett.124.066401.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873882 909CO $$ooai:juser.fz-juelich.de:873882$$popenaire$$popen_access$$pdnbdelivery$$pdriver$$pVDB
000873882 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b3$$kFZJ
000873882 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000873882 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000873882 9141_ $$y2020
000873882 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873882 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873882 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000873882 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2017
000873882 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2017
000873882 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873882 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873882 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873882 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873882 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873882 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873882 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873882 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873882 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000873882 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873882 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000873882 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000873882 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000873882 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000873882 980__ $$ajournal
000873882 980__ $$aVDB
000873882 980__ $$aI:(DE-Juel1)PGI-1-20110106
000873882 980__ $$aI:(DE-Juel1)IAS-1-20090406
000873882 980__ $$aI:(DE-82)080009_20140620
000873882 980__ $$aI:(DE-82)080012_20140620
000873882 980__ $$aUNRESTRICTED
000873882 9801_ $$aFullTexts