000873885 001__ 873885
000873885 005__ 20240711085645.0
000873885 0247_ $$2doi$$a10.1002/adem.201901237
000873885 0247_ $$2ISSN$$a1438-1656
000873885 0247_ $$2ISSN$$a1527-2648
000873885 0247_ $$2Handle$$a2128/25227
000873885 0247_ $$2WOS$$aWOS:000513074200001
000873885 037__ $$aFZJ-2020-01075
000873885 082__ $$a660
000873885 1001_ $$0P:(DE-Juel1)174420$$aFiebig, Jochen$$b0$$ufzj
000873885 245__ $$aThermal Spray Processes for the Repair of Gas Turbine Components
000873885 260__ $$aFrankfurt, M.$$bDeutsche Gesellschaft für Materialkunde$$c2020
000873885 3367_ $$2DRIVER$$aarticle
000873885 3367_ $$2DataCite$$aOutput Types/Journal article
000873885 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594044641_25319
000873885 3367_ $$2BibTeX$$aARTICLE
000873885 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873885 3367_ $$00$$2EndNote$$aJournal Article
000873885 520__ $$aGas turbine components are often operated in harsh conditions, which can lead to severe damage. As it is highly desirable from both an economical and an ecological point of view to restore these worn areas instead of manufacturing new components, repair technologies are of huge interest for companies supplying maintenance and overhaul of gas turbines. In this article, two thermal techniques are described that can be used for this application: cold gas spraying (CGS) and vacuum plasma spraying (VPS). The CGS process allows the deposition of metallic coatings with excellent mechanical properties; several examples including γ‐TiAl, Inconel (IN) 718, and IN 738 are given. Essential for the deposition of high‐performance coatings in CGS is to exceed the so‐called critical velocity. This is discussed also with experimental findings. As a final topic, experiments that use VPS for the repair of single‐crystal alloys are described.
000873885 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000873885 588__ $$aDataset connected to CrossRef
000873885 7001_ $$0P:(DE-Juel1)136812$$aBakan, Emine$$b1$$ufzj
000873885 7001_ $$0P:(DE-Juel1)169478$$aKalfhaus, Tobias$$b2$$ufzj
000873885 7001_ $$0P:(DE-Juel1)129633$$aMauer, Georg$$b3$$ufzj
000873885 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4$$ufzj
000873885 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b5$$eCorresponding author
000873885 773__ $$0PERI:(DE-600)2016980-2$$a10.1002/adem.201901237$$gp. 1901237 -$$n6$$p1901237 -$$tAdvanced engineering materials$$v22$$x1527-2648$$y2020
000873885 8564_ $$uhttps://juser.fz-juelich.de/record/873885/files/Fiebig_et_al-2020-Advanced_Engineering_Materials.pdf$$yOpenAccess
000873885 8564_ $$uhttps://juser.fz-juelich.de/record/873885/files/Fiebig_et_al-2020-Advanced_Engineering_Materials.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873885 8767_ $$92019-12-19$$d2020-02-14$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$padem.201901237
000873885 909CO $$ooai:juser.fz-juelich.de:873885$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000873885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174420$$aForschungszentrum Jülich$$b0$$kFZJ
000873885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136812$$aForschungszentrum Jülich$$b1$$kFZJ
000873885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169478$$aForschungszentrum Jülich$$b2$$kFZJ
000873885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich$$b3$$kFZJ
000873885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
000873885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b5$$kFZJ
000873885 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000873885 9141_ $$y2020
000873885 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873885 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000873885 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000873885 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENG MATER : 2017
000873885 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873885 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873885 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873885 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873885 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873885 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873885 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000873885 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000873885 9801_ $$aAPC
000873885 9801_ $$aFullTexts
000873885 980__ $$ajournal
000873885 980__ $$aVDB
000873885 980__ $$aUNRESTRICTED
000873885 980__ $$aI:(DE-Juel1)IEK-1-20101013
000873885 980__ $$aI:(DE-82)080011_20140620
000873885 980__ $$aAPC
000873885 981__ $$aI:(DE-Juel1)IMD-2-20101013