000874244 001__ 874244 000874244 005__ 20240711085658.0 000874244 0247_ $$2doi$$a10.1002/cnma.201900748 000874244 0247_ $$2Handle$$a2128/24670 000874244 0247_ $$2altmetric$$aaltmetric:74992166 000874244 0247_ $$2WOS$$aWOS:000516649400001 000874244 037__ $$aFZJ-2020-01335 000874244 082__ $$a540 000874244 1001_ $$0P:(DE-HGF)0$$aZehetmaier, Peter M.$$b0 000874244 245__ $$aNanocellulose‐mediated Transition of Lithium‐rich Pseudo‐quaternary Metal Oxide Nanoparticles into Lithium Nickel Cobalt Manganese oxide (NCM) Nanostructures 000874244 260__ $$aWeinheim$$bWiley$$c2020 000874244 3367_ $$2DRIVER$$aarticle 000874244 3367_ $$2DataCite$$aOutput Types/Journal article 000874244 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1586329581_20308 000874244 3367_ $$2BibTeX$$aARTICLE 000874244 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000874244 3367_ $$00$$2EndNote$$aJournal Article 000874244 520__ $$aWe report the syntheses of various compounds within the pseudo‐quaternary system of the type LiwNixCoyMnzOδ (δ≤1) (pre‐NCMs). Four different compositions of this compound were realized as ultrasmall crystalline nanoparticles of 1–4 nm diameter using low‐temperature solvothermal reaction conditions in tert‐butanol at only 170 °C. All of the pre‐NCMs crystallize in the rock‐salt structure and their lithium content is between 20% and 30% with respect to the complete metal content. By adjusting the lithium content to 105% stoichiometry in the solvothermal reaction, the pre‐NCMs can easily react to the respective Li(NixCoyMnz)O2 (NCM) nanoparticles. Furthermore, nanosized desert‐rose structured NCMs were obtained after addition of nanocellulose during the synthesis. By using the mixed metal monoxides as precursor for the NCMs, cation mixing between lithium and nickel is favored and gets more pronounced with increasing nickel content. The cation mixing effect compromises good electrochemical capacity retention, but the desert‐rose structure nevertheless enables enhanced stability at high power conditions, especially for NCM333. 000874244 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000874244 588__ $$aDataset connected to CrossRef 000874244 7001_ $$0P:(DE-Juel1)179146$$aZoller, Florian$$b1 000874244 7001_ $$0P:(DE-HGF)0$$aBeetz, Michael$$b2 000874244 7001_ $$0P:(DE-HGF)0$$aPlaß, Maximilian A.$$b3 000874244 7001_ $$0P:(DE-HGF)0$$aHäringer, Sebastian$$b4 000874244 7001_ $$0P:(DE-HGF)0$$aBöller, Bernhard$$b5 000874244 7001_ $$0P:(DE-HGF)0$$aDöblinger, Markus$$b6 000874244 7001_ $$0P:(DE-HGF)0$$aBein, Thomas$$b7 000874244 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b8$$eCorresponding author 000874244 773__ $$0PERI:(DE-600)2827071-X$$a10.1002/cnma.201900748$$gp. cnma.201900748$$n4$$p618-628$$tChemNanoMat$$v6$$x2199-692X$$y2020 000874244 8564_ $$uhttps://juser.fz-juelich.de/record/874244/files/cnma.201900748.pdf$$yOpenAccess 000874244 8564_ $$uhttps://juser.fz-juelich.de/record/874244/files/cnma.201900748.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000874244 8767_ $$92020-02-26$$d2020-03-02$$eHybrid-OA$$jDEAL$$lDEAL: Wiley 000874244 909CO $$ooai:juser.fz-juelich.de:874244$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire 000874244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179146$$aForschungszentrum Jülich$$b1$$kFZJ 000874244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b8$$kFZJ 000874244 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000874244 9141_ $$y2020 000874244 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000874244 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000874244 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMNANOMAT : 2017 000874244 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000874244 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000874244 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000874244 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000874244 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000874244 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000874244 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000874244 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0 000874244 9801_ $$aAPC 000874244 9801_ $$aFullTexts 000874244 980__ $$ajournal 000874244 980__ $$aVDB 000874244 980__ $$aUNRESTRICTED 000874244 980__ $$aI:(DE-Juel1)IEK-1-20101013 000874244 980__ $$aAPC 000874244 981__ $$aI:(DE-Juel1)IMD-2-20101013