000874244 001__ 874244
000874244 005__ 20240711085658.0
000874244 0247_ $$2doi$$a10.1002/cnma.201900748
000874244 0247_ $$2Handle$$a2128/24670
000874244 0247_ $$2altmetric$$aaltmetric:74992166
000874244 0247_ $$2WOS$$aWOS:000516649400001
000874244 037__ $$aFZJ-2020-01335
000874244 082__ $$a540
000874244 1001_ $$0P:(DE-HGF)0$$aZehetmaier, Peter M.$$b0
000874244 245__ $$aNanocellulose‐mediated Transition of Lithium‐rich Pseudo‐quaternary Metal Oxide Nanoparticles into Lithium Nickel Cobalt Manganese oxide (NCM) Nanostructures
000874244 260__ $$aWeinheim$$bWiley$$c2020
000874244 3367_ $$2DRIVER$$aarticle
000874244 3367_ $$2DataCite$$aOutput Types/Journal article
000874244 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1586329581_20308
000874244 3367_ $$2BibTeX$$aARTICLE
000874244 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874244 3367_ $$00$$2EndNote$$aJournal Article
000874244 520__ $$aWe report the syntheses of various compounds within the pseudo‐quaternary system of the type LiwNixCoyMnzOδ (δ≤1) (pre‐NCMs). Four different compositions of this compound were realized as ultrasmall crystalline nanoparticles of 1–4 nm diameter using low‐temperature solvothermal reaction conditions in tert‐butanol at only 170 °C. All of the pre‐NCMs crystallize in the rock‐salt structure and their lithium content is between 20% and 30% with respect to the complete metal content. By adjusting the lithium content to 105% stoichiometry in the solvothermal reaction, the pre‐NCMs can easily react to the respective Li(NixCoyMnz)O2 (NCM) nanoparticles. Furthermore, nanosized desert‐rose structured NCMs were obtained after addition of nanocellulose during the synthesis. By using the mixed metal monoxides as precursor for the NCMs, cation mixing between lithium and nickel is favored and gets more pronounced with increasing nickel content. The cation mixing effect compromises good electrochemical capacity retention, but the desert‐rose structure nevertheless enables enhanced stability at high power conditions, especially for NCM333.
000874244 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000874244 588__ $$aDataset connected to CrossRef
000874244 7001_ $$0P:(DE-Juel1)179146$$aZoller, Florian$$b1
000874244 7001_ $$0P:(DE-HGF)0$$aBeetz, Michael$$b2
000874244 7001_ $$0P:(DE-HGF)0$$aPlaß, Maximilian A.$$b3
000874244 7001_ $$0P:(DE-HGF)0$$aHäringer, Sebastian$$b4
000874244 7001_ $$0P:(DE-HGF)0$$aBöller, Bernhard$$b5
000874244 7001_ $$0P:(DE-HGF)0$$aDöblinger, Markus$$b6
000874244 7001_ $$0P:(DE-HGF)0$$aBein, Thomas$$b7
000874244 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b8$$eCorresponding author
000874244 773__ $$0PERI:(DE-600)2827071-X$$a10.1002/cnma.201900748$$gp. cnma.201900748$$n4$$p618-628$$tChemNanoMat$$v6$$x2199-692X$$y2020
000874244 8564_ $$uhttps://juser.fz-juelich.de/record/874244/files/cnma.201900748.pdf$$yOpenAccess
000874244 8564_ $$uhttps://juser.fz-juelich.de/record/874244/files/cnma.201900748.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874244 8767_ $$92020-02-26$$d2020-03-02$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000874244 909CO $$ooai:juser.fz-juelich.de:874244$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000874244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179146$$aForschungszentrum Jülich$$b1$$kFZJ
000874244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b8$$kFZJ
000874244 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000874244 9141_ $$y2020
000874244 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874244 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874244 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMNANOMAT : 2017
000874244 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874244 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874244 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874244 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874244 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874244 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874244 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874244 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000874244 9801_ $$aAPC
000874244 9801_ $$aFullTexts
000874244 980__ $$ajournal
000874244 980__ $$aVDB
000874244 980__ $$aUNRESTRICTED
000874244 980__ $$aI:(DE-Juel1)IEK-1-20101013
000874244 980__ $$aAPC
000874244 981__ $$aI:(DE-Juel1)IMD-2-20101013