000874249 001__ 874249
000874249 005__ 20220930130231.0
000874249 0247_ $$2doi$$a10.1103/PhysRevMaterials.4.033604
000874249 0247_ $$2Handle$$a2128/24610
000874249 0247_ $$2WOS$$aWOS:000521131900001
000874249 037__ $$aFZJ-2020-01340
000874249 082__ $$a530
000874249 1001_ $$0P:(DE-Juel1)161247$$avon den Driesch, Nils$$b0$$eCorresponding author
000874249 245__ $$aThermally activated diffusion and lattice relaxation in (Si)GeSn materials
000874249 260__ $$aCollege Park, MD$$bAPS$$c2020
000874249 3367_ $$2DRIVER$$aarticle
000874249 3367_ $$2DataCite$$aOutput Types/Journal article
000874249 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1585302137_27268
000874249 3367_ $$2BibTeX$$aARTICLE
000874249 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874249 3367_ $$00$$2EndNote$$aJournal Article
000874249 520__ $$aGermanium-tin (GeSn) alloys have emerged as a promising material for future optoelectronics, energy harvesting, and nanoelectronics owing to their direct band gap and compatibility with existing Si-based electronics. Yet, their metastability poses significant challenges calling for in-depth investigations of their thermal behavior. With this perspective, this work addresses the interdiffusion processes throughout thermal annealing of pseudomorphic GeSn binary and SiGeSn ternary alloys. In both systems, the initially pseudomorphic layers are relaxed upon annealing exclusively via thermally induced diffusional mass transfer of Sn. Systematic postgrowth annealing experiments reveal enhanced Sn and Si diffusion regimes that manifest at temperatures below 650 °C. The amplified low-temperature diffusion and the observation of only subtle differences between binary and ternary hint at the unique metastability of the Si-Ge-Sn material system as the most important driving force for phase separation.
000874249 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000874249 588__ $$aDataset connected to CrossRef
000874249 7001_ $$0P:(DE-HGF)0$$aWirths, Stephan$$b1
000874249 7001_ $$0P:(DE-HGF)0$$aTroitsch, Rene$$b2
000874249 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b3
000874249 7001_ $$0P:(DE-Juel1)133840$$aBreuer, Uwe$$b4
000874249 7001_ $$0P:(DE-HGF)0$$aMoutanabbir, Oussama$$b5
000874249 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b6
000874249 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan$$b7
000874249 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.4.033604$$gVol. 4, no. 3, p. 033604$$n3$$p033604$$tPhysical review materials$$v4$$x2475-9953$$y2020
000874249 8564_ $$uhttps://juser.fz-juelich.de/record/874249/files/INV_20_MAR_003281.pdf
000874249 8564_ $$uhttps://juser.fz-juelich.de/record/874249/files/INV_20_MAR_003281.pdf?subformat=pdfa$$xpdfa
000874249 8564_ $$uhttps://juser.fz-juelich.de/record/874249/files/PhysRevMaterials.4.033604.pdf$$yOpenAccess
000874249 8564_ $$uhttps://juser.fz-juelich.de/record/874249/files/PhysRevMaterials.4.033604.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874249 8767_ $$8INV/20/MAR/003281$$92020-03-02$$d2020-03-06$$eHybrid-OA$$jZahlung erfolgt
000874249 909CO $$ooai:juser.fz-juelich.de:874249$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000874249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich$$b0$$kFZJ
000874249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000874249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
000874249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b3$$kFZJ
000874249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133840$$aForschungszentrum Jülich$$b4$$kFZJ
000874249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b6$$kFZJ
000874249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b7$$kFZJ
000874249 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000874249 9141_ $$y2020
000874249 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874249 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874249 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2017
000874249 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874249 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874249 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874249 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874249 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874249 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000874249 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x1
000874249 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x2
000874249 9201_ $$0I:(DE-Juel1)VDB881$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x3
000874249 980__ $$ajournal
000874249 980__ $$aVDB
000874249 980__ $$aUNRESTRICTED
000874249 980__ $$aI:(DE-Juel1)PGI-9-20110106
000874249 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000874249 980__ $$aI:(DE-Juel1)PGI-10-20170113
000874249 980__ $$aI:(DE-Juel1)VDB881
000874249 980__ $$aAPC
000874249 9801_ $$aAPC
000874249 9801_ $$aFullTexts