Home > Publications database > Thermally activated diffusion and lattice relaxation in (Si)GeSn materials > print |
001 | 874249 | ||
005 | 20220930130231.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevMaterials.4.033604 |2 doi |
024 | 7 | _ | |a 2128/24610 |2 Handle |
024 | 7 | _ | |a WOS:000521131900001 |2 WOS |
037 | _ | _ | |a FZJ-2020-01340 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a von den Driesch, Nils |0 P:(DE-Juel1)161247 |b 0 |e Corresponding author |
245 | _ | _ | |a Thermally activated diffusion and lattice relaxation in (Si)GeSn materials |
260 | _ | _ | |a College Park, MD |c 2020 |b APS |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1585302137_27268 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Germanium-tin (GeSn) alloys have emerged as a promising material for future optoelectronics, energy harvesting, and nanoelectronics owing to their direct band gap and compatibility with existing Si-based electronics. Yet, their metastability poses significant challenges calling for in-depth investigations of their thermal behavior. With this perspective, this work addresses the interdiffusion processes throughout thermal annealing of pseudomorphic GeSn binary and SiGeSn ternary alloys. In both systems, the initially pseudomorphic layers are relaxed upon annealing exclusively via thermally induced diffusional mass transfer of Sn. Systematic postgrowth annealing experiments reveal enhanced Sn and Si diffusion regimes that manifest at temperatures below 650 °C. The amplified low-temperature diffusion and the observation of only subtle differences between binary and ternary hint at the unique metastability of the Si-Ge-Sn material system as the most important driving force for phase separation. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Wirths, Stephan |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Troitsch, Rene |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Mussler, Gregor |0 P:(DE-Juel1)128617 |b 3 |
700 | 1 | _ | |a Breuer, Uwe |0 P:(DE-Juel1)133840 |b 4 |
700 | 1 | _ | |a Moutanabbir, Oussama |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Grützmacher, Detlev |0 P:(DE-Juel1)125588 |b 6 |
700 | 1 | _ | |a Buca, Dan |0 P:(DE-Juel1)125569 |b 7 |
773 | _ | _ | |a 10.1103/PhysRevMaterials.4.033604 |g Vol. 4, no. 3, p. 033604 |0 PERI:(DE-600)2898355-5 |n 3 |p 033604 |t Physical review materials |v 4 |y 2020 |x 2475-9953 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/874249/files/INV_20_MAR_003281.pdf |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/874249/files/INV_20_MAR_003281.pdf?subformat=pdfa |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/874249/files/PhysRevMaterials.4.033604.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/874249/files/PhysRevMaterials.4.033604.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:874249 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)161247 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)128617 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)133840 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)125588 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)125569 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV MATER : 2017 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)ZEA-3-20090406 |k ZEA-3 |l Analytik |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-10-20170113 |k PGI-10 |l JARA Institut Green IT |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)VDB881 |k JARA-FIT |l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-Juel1)ZEA-3-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-10-20170113 |
980 | _ | _ | |a I:(DE-Juel1)VDB881 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|