000874254 001__ 874254
000874254 005__ 20240711113956.0
000874254 0247_ $$2doi$$a10.1088/2516-1067/ab7c2e
000874254 0247_ $$2Handle$$a2128/24638
000874254 037__ $$aFZJ-2020-01345
000874254 082__ $$a610
000874254 1001_ $$0P:(DE-Juel1)172648$$aSchluck, Friedrich$$b0$$eCorresponding author
000874254 245__ $$aKinetic modeling of seeded nitrogen in an ITER baseline scenario
000874254 260__ $$aPhiladelphia, PA$$bIOP Publishing Ltd.$$c2020
000874254 3367_ $$2DRIVER$$aarticle
000874254 3367_ $$2DataCite$$aOutput Types/Journal article
000874254 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1585830600_11669
000874254 3367_ $$2BibTeX$$aARTICLE
000874254 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874254 3367_ $$00$$2EndNote$$aJournal Article
000874254 520__ $$aITER as the next-level fusion device is intended to reliably produce more fusion power than required for sustainably heating its plasma. Modeling has been an essential part of the ITER design and for planning of future experimental campaigns. In a tokamak or stellarator plasma discharge, impurities play a significant role, especially in the edge region. Residual gases, eroded wall material, or even intentionally seeded gases all heavily influence the confinement and, thus, the overall fusion performance. Nitrogen is such a gas envisaged to be seeded into a discharge plasma. By modeling the impurities kinetically using the full three-dimensional Monte-Carlo code package EMC3-EIRENE, we analyze the distribution of nitrogen charge-state resolved in a seeded ITER baseline scenario and draw conclusions for the hydrogen background plasma density. Lastly, we compare the influence of a more refined kinetic ion transport in EIRENE including additional physical effects on the impurity density.
000874254 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000874254 588__ $$aDataset connected to CrossRef
000874254 773__ $$0PERI:(DE-600)2953569-4$$a10.1088/2516-1067/ab7c2e$$gVol. 2, no. 1, p. 015015 -$$n1$$p015015 -$$tPlasma research express$$v2$$x2516-1067$$y2020
000874254 8564_ $$uhttps://juser.fz-juelich.de/record/874254/files/Schluck_2020_Plasma_Res._Express_2_015015.pdf$$yOpenAccess
000874254 8564_ $$uhttps://juser.fz-juelich.de/record/874254/files/Schluck_2020_Plasma_Res._Express_2_015015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874254 8767_ $$92020-03-02$$d2020-03-02$$eHybrid-OA$$jOffsetting$$lOffsetting: IOP$$pPREX-100176.R2
000874254 909CO $$ooai:juser.fz-juelich.de:874254$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000874254 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172648$$aForschungszentrum Jülich$$b0$$kFZJ
000874254 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000874254 9141_ $$y2020
000874254 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874254 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874254 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000874254 9801_ $$aAPC
000874254 9801_ $$aFullTexts
000874254 980__ $$ajournal
000874254 980__ $$aVDB
000874254 980__ $$aUNRESTRICTED
000874254 980__ $$aI:(DE-Juel1)IEK-4-20101013
000874254 980__ $$aAPC
000874254 981__ $$aI:(DE-Juel1)IFN-1-20101013