001     874254
005     20240711113956.0
024 7 _ |a 10.1088/2516-1067/ab7c2e
|2 doi
024 7 _ |a 2128/24638
|2 Handle
037 _ _ |a FZJ-2020-01345
082 _ _ |a 610
100 1 _ |a Schluck, Friedrich
|0 P:(DE-Juel1)172648
|b 0
|e Corresponding author
245 _ _ |a Kinetic modeling of seeded nitrogen in an ITER baseline scenario
260 _ _ |a Philadelphia, PA
|c 2020
|b IOP Publishing Ltd.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1585830600_11669
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a ITER as the next-level fusion device is intended to reliably produce more fusion power than required for sustainably heating its plasma. Modeling has been an essential part of the ITER design and for planning of future experimental campaigns. In a tokamak or stellarator plasma discharge, impurities play a significant role, especially in the edge region. Residual gases, eroded wall material, or even intentionally seeded gases all heavily influence the confinement and, thus, the overall fusion performance. Nitrogen is such a gas envisaged to be seeded into a discharge plasma. By modeling the impurities kinetically using the full three-dimensional Monte-Carlo code package EMC3-EIRENE, we analyze the distribution of nitrogen charge-state resolved in a seeded ITER baseline scenario and draw conclusions for the hydrogen background plasma density. Lastly, we compare the influence of a more refined kinetic ion transport in EIRENE including additional physical effects on the impurity density.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
773 _ _ |a 10.1088/2516-1067/ab7c2e
|g Vol. 2, no. 1, p. 015015 -
|0 PERI:(DE-600)2953569-4
|n 1
|p 015015 -
|t Plasma research express
|v 2
|y 2020
|x 2516-1067
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/874254/files/Schluck_2020_Plasma_Res._Express_2_015015.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/874254/files/Schluck_2020_Plasma_Res._Express_2_015015.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:874254
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172648
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21