000874373 001__ 874373 000874373 005__ 20220930130231.0 000874373 0247_ $$2doi$$a10.1002/mrm.28218 000874373 0247_ $$2ISSN$$a0740-3194 000874373 0247_ $$2ISSN$$a1522-2594 000874373 0247_ $$2Handle$$a2128/24976 000874373 0247_ $$2altmetric$$aaltmetric:76601248 000874373 0247_ $$2pmid$$apmid:32086847 000874373 0247_ $$2WOS$$aWOS:000518150700001 000874373 037__ $$aFZJ-2020-01395 000874373 082__ $$a610 000874373 1001_ $$0P:(DE-Juel1)141899$$aYun, Seong Dae$$b0 000874373 245__ $$aAnalysis of EPI phase correction with low flip‐angle excitation to reduce the required minimum TE: Application to whole‐brain, submillimeter‐resolution fMRI at 3 T 000874373 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2020 000874373 3367_ $$2DRIVER$$aarticle 000874373 3367_ $$2DataCite$$aOutput Types/Journal article 000874373 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591204614_31050 000874373 3367_ $$2BibTeX$$aARTICLE 000874373 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000874373 3367_ $$00$$2EndNote$$aJournal Article 000874373 520__ $$aEcho planar imaging is used widely for its imaging speed. However, its applications often suffer from ghost artifacts. In the community, an approach using three navigator echoes is used commonly for the artifact correction. Although this scheme is effective, as the matrix size increases for high‐resolution imaging, the navigator echoes can contribute significantly to increasing the “required minimum TE.” To overcome this issue, this work proposes the use of an alternative navigator echo scheme called the “TR‐external” scheme.The TR‐external scheme reduces the required minimum TE by allocating an additional excitation loop for the navigator echoes before every main excitation loop. In this work, a detailed analysis on the TR‐external scheme was performed to assess its performance in comparison to the standard scheme. Visual fMRI was performed to check the feasibility of using the TR‐external scheme for detecting functional signals.The performance of the TR‐external scheme was comparable with that of the standard scheme in terms of the SNR, elimination of ghost artifacts, and the BOLD detection. For a given matrix size (288 × 288), the TR‐external scheme allowed a substantially shorter TE (5.94 ms) compared with the standard scheme, which resulted in a higher SNR. Furthermore, this feature enabled the submillimeter‐resolution (0.73 × 0.73 mm2) fMRI measurement with a favorable TE (35 ms) at 3 T. The fMRI results revealed that activated voxels are well localized along the cortical ribbon.A TR‐external scheme for EPI phase correction was implemented at 3 T. Its feasibility for submillimeter‐resolution fMRI was successfully demonstrated. 000874373 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0 000874373 588__ $$aDataset connected to CrossRef 000874373 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b1$$eCorresponding author$$ufzj 000874373 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.28218$$gp. mrm.28218$$n3$$p1416 - 1429$$tMagnetic resonance in medicine$$v84$$x1522-2594$$y2020 000874373 8564_ $$uhttps://juser.fz-juelich.de/record/874373/files/mrm.28218.pdf$$yOpenAccess 000874373 8564_ $$uhttps://juser.fz-juelich.de/record/874373/files/mrm.28218.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000874373 8767_ $$92020-01-31$$d2020-06-02$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$pMRM-19-20008.R3 000874373 909CO $$ooai:juser.fz-juelich.de:874373$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery 000874373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141899$$aForschungszentrum Jülich$$b0$$kFZJ 000874373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b1$$kFZJ 000874373 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0 000874373 9141_ $$y2020 000874373 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000874373 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000874373 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000874373 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2017 000874373 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000874373 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000874373 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000874373 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000874373 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000874373 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000874373 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000874373 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine 000874373 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000874373 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000874373 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x0 000874373 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1 000874373 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2 000874373 980__ $$ajournal 000874373 980__ $$aVDB 000874373 980__ $$aUNRESTRICTED 000874373 980__ $$aI:(DE-Juel1)INM-11-20170113 000874373 980__ $$aI:(DE-Juel1)INM-4-20090406 000874373 980__ $$aI:(DE-82)080010_20140620 000874373 980__ $$aAPC 000874373 9801_ $$aAPC 000874373 9801_ $$aFullTexts