000874373 001__ 874373
000874373 005__ 20220930130231.0
000874373 0247_ $$2doi$$a10.1002/mrm.28218
000874373 0247_ $$2ISSN$$a0740-3194
000874373 0247_ $$2ISSN$$a1522-2594
000874373 0247_ $$2Handle$$a2128/24976
000874373 0247_ $$2altmetric$$aaltmetric:76601248
000874373 0247_ $$2pmid$$apmid:32086847
000874373 0247_ $$2WOS$$aWOS:000518150700001
000874373 037__ $$aFZJ-2020-01395
000874373 082__ $$a610
000874373 1001_ $$0P:(DE-Juel1)141899$$aYun, Seong Dae$$b0
000874373 245__ $$aAnalysis of EPI phase correction with low flip‐angle excitation to reduce the required minimum TE: Application to whole‐brain, submillimeter‐resolution fMRI at 3 T
000874373 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2020
000874373 3367_ $$2DRIVER$$aarticle
000874373 3367_ $$2DataCite$$aOutput Types/Journal article
000874373 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591204614_31050
000874373 3367_ $$2BibTeX$$aARTICLE
000874373 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874373 3367_ $$00$$2EndNote$$aJournal Article
000874373 520__ $$aEcho planar imaging is used widely for its imaging speed. However, its applications often suffer from ghost artifacts. In the community, an approach using three navigator echoes is used commonly for the artifact correction. Although this scheme is effective, as the matrix size increases for high‐resolution imaging, the navigator echoes can contribute significantly to increasing the “required minimum TE.” To overcome this issue, this work proposes the use of an alternative navigator echo scheme called the “TR‐external” scheme.The TR‐external scheme reduces the required minimum TE by allocating an  additional excitation loop for the navigator echoes before every main excitation loop. In this work, a detailed analysis on the TR‐external scheme was performed to assess its performance in comparison to the standard scheme. Visual fMRI was performed to check the feasibility of using the TR‐external scheme for detecting functional signals.The performance of the TR‐external scheme was comparable with that of the standard scheme in terms of the SNR, elimination of ghost artifacts, and the BOLD detection. For a given matrix size (288 × 288), the TR‐external scheme allowed a substantially shorter TE (5.94 ms) compared with the standard scheme, which resulted in a higher SNR. Furthermore, this feature enabled the submillimeter‐resolution (0.73 × 0.73 mm2) fMRI measurement with a favorable TE (35 ms) at 3 T. The fMRI results revealed that activated voxels are well localized along the cortical ribbon.A TR‐external scheme for EPI phase correction was implemented at 3 T. Its feasibility for submillimeter‐resolution fMRI was successfully demonstrated.
000874373 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000874373 588__ $$aDataset connected to CrossRef
000874373 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b1$$eCorresponding author$$ufzj
000874373 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.28218$$gp. mrm.28218$$n3$$p1416 - 1429$$tMagnetic resonance in medicine$$v84$$x1522-2594$$y2020
000874373 8564_ $$uhttps://juser.fz-juelich.de/record/874373/files/mrm.28218.pdf$$yOpenAccess
000874373 8564_ $$uhttps://juser.fz-juelich.de/record/874373/files/mrm.28218.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874373 8767_ $$92020-01-31$$d2020-06-02$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$pMRM-19-20008.R3
000874373 909CO $$ooai:juser.fz-juelich.de:874373$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000874373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141899$$aForschungszentrum Jülich$$b0$$kFZJ
000874373 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b1$$kFZJ
000874373 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000874373 9141_ $$y2020
000874373 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874373 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000874373 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874373 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2017
000874373 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874373 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874373 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874373 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874373 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874373 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000874373 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874373 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000874373 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000874373 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874373 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x0
000874373 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000874373 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000874373 980__ $$ajournal
000874373 980__ $$aVDB
000874373 980__ $$aUNRESTRICTED
000874373 980__ $$aI:(DE-Juel1)INM-11-20170113
000874373 980__ $$aI:(DE-Juel1)INM-4-20090406
000874373 980__ $$aI:(DE-82)080010_20140620
000874373 980__ $$aAPC
000874373 9801_ $$aAPC
000874373 9801_ $$aFullTexts