000874385 001__ 874385
000874385 005__ 20240619091254.0
000874385 0247_ $$2doi$$a10.1002/pssa.201900924
000874385 0247_ $$2ISSN$$a0031-8965
000874385 0247_ $$2ISSN$$a1521-396X
000874385 0247_ $$2ISSN$$a1862-6300
000874385 0247_ $$2ISSN$$a1862-6319
000874385 0247_ $$2Handle$$a2128/25724
000874385 0247_ $$2WOS$$aWOS:000552069000010
000874385 037__ $$aFZJ-2020-01405
000874385 082__ $$a530
000874385 1001_ $$0P:(DE-Juel1)176886$$aGuo, Ting$$b0
000874385 245__ $$aA Novel Ratiometric Electrochemical Biosensor Based on a Split Aptamer for the Detection of Dopamine with Logic Gate Operations
000874385 260__ $$aWeinheim$$bWiley-VCH$$c2020
000874385 3367_ $$2DRIVER$$aarticle
000874385 3367_ $$2DataCite$$aOutput Types/Journal article
000874385 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600881866_17522
000874385 3367_ $$2BibTeX$$aARTICLE
000874385 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874385 3367_ $$00$$2EndNote$$aJournal Article
000874385 520__ $$aA novel dual‐signal ratiometric electrochemical biosensor based on a split aptamer is developed. A common shortcoming of amperometric aptamer sensors is unspecific signaling due to ssDNA conformational flexibility. Herein, a ratiometric detection using two competitive redox‐labeled aptamer strands is proposed. The neurotransmitter dopamine (DA) is chosen as a model target due to its importance for signal processing in the central nervous system. A DA aptamer is split into two parts, S1 and S2, where strand S1 is tethered to the electrode, whereas the second strand is labeled with methylene blue (MB) and acts as a redox reporter. Another ssDNA strand (CS1) tagged with anthraquinone (AQ) is introduced, which is complementary to strand S1 and reports on surface‐tethered strands that remain in its virgin state. In the presence of DA, CS1 is released from the surface due to the formation of S1–S2–DA complexes, resulting in decreasing AQ and increasing MB Faraday currents. Furthermore, logic gate operations can be performed to either improve signal reliability or enlarge the detection range. This proof‐of‐concept study demonstrates that the splitting of a full aptamer into two parts together with the use of complementary ratiomeric tests can improve the reliability of the sensor response.
000874385 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000874385 588__ $$aDataset connected to CrossRef
000874385 7001_ $$0P:(DE-Juel1)171355$$aWu, Changtong$$b1$$ufzj
000874385 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b2$$ufzj
000874385 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b3$$eCorresponding author
000874385 773__ $$0PERI:(DE-600)1481091-8$$a10.1002/pssa.201900924$$gp. 1900924 -$$n13$$p1900924 -$$tPhysica status solidi / A Applied research A$$v217$$x1862-6319$$y2020
000874385 8564_ $$uhttps://juser.fz-juelich.de/record/874385/files/Guo_et_al-2020-physica_status_solidi_%28a%29.pdf$$yOpenAccess
000874385 8564_ $$uhttps://juser.fz-juelich.de/record/874385/files/Guo_et_al-2020-physica_status_solidi_%28a%29.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874385 8767_ $$92020-02-26$$d2020-03-06$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$ppssa.201900924
000874385 909CO $$ooai:juser.fz-juelich.de:874385$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000874385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176886$$aForschungszentrum Jülich$$b0$$kFZJ
000874385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171355$$aForschungszentrum Jülich$$b1$$kFZJ
000874385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b2$$kFZJ
000874385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b3$$kFZJ
000874385 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000874385 9141_ $$y2020
000874385 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874385 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874385 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874385 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874385 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874385 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000874385 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874385 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874385 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874385 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874385 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI A : 2017
000874385 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874385 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000874385 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874385 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000874385 9801_ $$aAPC
000874385 9801_ $$aFullTexts
000874385 980__ $$ajournal
000874385 980__ $$aVDB
000874385 980__ $$aUNRESTRICTED
000874385 980__ $$aI:(DE-Juel1)ICS-8-20110106
000874385 980__ $$aAPC
000874385 981__ $$aI:(DE-Juel1)IBI-3-20200312