001     874386
005     20240711113835.0
024 7 _ |a 10.1016/j.nme.2020.100742
|2 doi
024 7 _ |a 2128/24634
|2 Handle
024 7 _ |a WOS:000569099500004
|2 WOS
037 _ _ |a FZJ-2020-01406
082 _ _ |a 624
100 1 _ |a Möller, S.
|0 P:(DE-Juel1)139534
|b 0
|e Corresponding author
111 2 _ |a Plasma-Facing Materials and Components for Fusion Applications
|c Eindhoven
|g PFMC-17
245 _ _ |a Deuterium retention in tungsten and reduced activation steels after 3 MeV proton irradiation
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1585824891_12395
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Nuclear fusion plasma-facing materials (PFM) will suffer from irradiation, leading to significant changes in the material properties. This study investigates the impact ofdisplacement damage on the deuterium retention near room temperature. ITER grade tungsten, Eurofer-97, and HiperFer 17Cr5 steel samples are irradiated with a tandem accelerator with ∼3 MeV protons at currents of 100-600 nA on 250-550 µm spots at 320±10 K. In total 33 spots from 0 to 0.9 displacements per atom (DPA) at 0-4 µm depth are irradiated on 5 samples. After irradiation, the samples are exposed to D2 plasmas with a peak ion-flux of 2.1*1021 D/m²s for 4 h at <420 K in PSI-2. Lastly, D retention is measured via 3He nuclear reaction analysis with a spot size of 200 µm up to 4.5 µm depth. The long-term D retention in both W and steel increases with DPA with a saturation starting around 0.2 DPA. Retention in W increased by a factor 12 with up to 3.2 at.% D, while in steel increases up to 180 times with up to 0.08 at.% D were observed. The results highlight the importance of using steels also in PFMs. Compatibility of the results with heavy ion irradiations boosts the confidence in inter-comparability between different ion types, but also between ions and neutrons.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
536 _ _ |a EUROfusion - Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium (633053)
|0 G:(EU-Grant)633053
|c 633053
|f EURATOM-Adhoc-2014-20
|x 1
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Krug, R.
|0 P:(DE-Juel1)172718
|b 1
700 1 _ |a Rayaprolu, R.
|0 P:(DE-Juel1)166421
|b 2
|u fzj
700 1 _ |a Kuhn, B.
|0 P:(DE-Juel1)129742
|b 3
700 1 _ |a Joußen, E.
|0 P:(DE-Juel1)132477
|b 4
|u fzj
700 1 _ |a Kreter, A.
|0 P:(DE-Juel1)130070
|b 5
|u fzj
773 _ _ |a 10.1016/j.nme.2020.100742
|g p. 100742 -
|0 PERI:(DE-600)2808888-8
|p 100742
|t Nuclear materials and energy
|v 23
|y 2020
|x 2352-1791
856 4 _ |u https://juser.fz-juelich.de/record/874386/files/Invoice_OAD0000035702.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/874386/files/1-s2.0-S2352179120300181-main.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/874386/files/Invoice_OAD0000035702.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/874386/files/1-s2.0-S2352179120300181-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:874386
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)139534
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172718
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166421
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129742
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132477
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130070
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 2
920 1 _ |0 I:(DE-Juel1)S-L-20150915
|k S-L
|l Betriebslabor
|x 3
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)S-L-20150915
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21