Home > Publications database > Numerical Simulations of Strongly Correlated Electron Systems |
Contribution to a conference proceedings/Contribution to a book | FZJ-2020-01430 |
2020
Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
Jülich
Please use a persistent id in citations: http://hdl.handle.net/2128/24530
Abstract: The richness of emergent phenomena that stem from the fundamental laws of quantum mechanics is astonishing. Topology, inherent to the integer Hall effect and Chern insulators, allows us to understand why a dirty two-dimensional electron gas can provide the most precise determination of fundamental constants. Electron correlations lead to the notion of fractionalisation and associated emergent lattice gauge theories widely studied in high energy physics. Finally, quantum engineering leads to amazing possibilities for designing novel materials and nano-structures that may very well define the building blocks of information technologies beyond silicon. Given this fascinating richness of phenomena, the natural question to ask for a numerically oriented researcher is: can one develop a flexible and efficient program package that allows one to define and simulate, at minimal programming cost, a wide set of model Hamiltonians? We have recently written an open source library, coined Algorithms for Lattice Fermions (ALF) that allows us to study a large variety of designer and realistic models. In this article, we will summarise aspects of the ALF-library, demonstrate its range of application and then concentrate on the case study of fractionalisation in a Falicov-Kimball model.
![]() |
The record appears in these collections: |
Book/Proceedings
NIC Symposium 2020: proceedings
NIC Symposium, JülichJülich, Germany, 27 Feb 2020 - 28 Feb 2020
Jülich : Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag, NIC Series 50, v, 424 S. (2020)
Files
Fulltext by OpenAccess repository
BibTeX |
EndNote:
XML,
Text |
RIS