000874614 001__ 874614
000874614 005__ 20240712100819.0
000874614 0247_ $$2doi$$a10.5194/amt-13-1243-2020
000874614 0247_ $$2ISSN$$a1867-1381
000874614 0247_ $$2ISSN$$a1867-8548
000874614 0247_ $$2Handle$$a2128/24582
000874614 0247_ $$2WOS$$aWOS:000520409100002
000874614 037__ $$aFZJ-2020-01539
000874614 082__ $$a550
000874614 1001_ $$0P:(DE-Juel1)129121$$aGriessbach, Sabine$$b0$$eCorresponding author
000874614 245__ $$aAerosol and cloud top height information of Envisat MIPAS measurements
000874614 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2020
000874614 3367_ $$2DRIVER$$aarticle
000874614 3367_ $$2DataCite$$aOutput Types/Journal article
000874614 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1585830315_10314
000874614 3367_ $$2BibTeX$$aARTICLE
000874614 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000874614 3367_ $$00$$2EndNote$$aJournal Article
000874614 520__ $$aInfrared limb emission instruments have a long history in measuring clouds and aerosol. In particular, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument aboard ESA's Envisat provides 10 years of altitude-resolved global measurements. Previous studies found systematic overestimations and underestimations of cloud top heights for cirrus and polar stratospheric clouds. To assess the cloud top height information and to characterise its uncertainty for the MIPAS instrument we performed simulations for ice clouds, volcanic ash, and sulfate aerosol. From the simulation results we found that in addition to the known effects of the field-of-view that can lead to a cloud top height overestimation, and broken cloud conditions that can lead to underestimation, the cloud extinction also plays an important role. While for optically thick clouds the possible cloud top height overestimation for MIPAS reaches up to 1.6 km due to the field-of-view, for optically thin clouds and aerosol the systematic underestimation reaches 5.1 km. For the detection sensitivity and the degree of underestimation of the MIPAS measurements, the cloud layer thickness also plays a role; 1 km thick clouds are detectable down to extinctions of 5×10−4 km−1 and 6 km thick clouds are detectable down to extinctions of 1×10−4 km−1, where the largest underestimations of the cloud top height occur for the optically thinnest clouds with a vertical extent of 6 km. The relation between extinction coefficient, cloud top height estimate, and layer thickness is confirmed by a comparison of MIPAS cloud top heights of the volcanic sulfate aerosol from the Nabro eruption in 2011 with space- and ground-based lidar measurements and twilight measurements between June 2011 and February 2012. For plumes up to 2 months old, where the extinction was between 1×10−4 and 7×10−4 km−1 and the layer thickness mostly below 4 km, we found for MIPAS an average underestimation of 1.1 km. In the aged plume with extinctions down to 5×10−5 km−1 and layer thicknesses of up to 9.5 km, the underestimation was higher, reaching up to 7.2 km. The dependency of the cloud top height overestimations or underestimations on the extinction coefficient can explain seemingly contradictory results of previous studies. In spite of the relatively large uncertainty range of the cloud top height, the comparison of the detection sensitivity towards sulfate aerosol between MIPAS and a suite of widely used UV/VIS limb and IR nadir satellite aerosol measurements shows that MIPAS provides complementary information in terms of detection sensitivity.
000874614 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000874614 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x1
000874614 588__ $$aDataset connected to CrossRef
000874614 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b1
000874614 7001_ $$0P:(DE-Juel1)129154$$aSpang, Reinhold$$b2
000874614 7001_ $$0P:(DE-HGF)0$$aAchtert, Peggy$$b3
000874614 7001_ $$0P:(DE-Juel1)129170$$avon Hobe, Marc$$b4
000874614 7001_ $$00000-0003-3800-8051$$aMateshvili, Nina$$b5
000874614 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b6
000874614 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b7
000874614 7001_ $$0P:(DE-Juel1)139013$$aRolf, Christian$$b8
000874614 7001_ $$0P:(DE-HGF)0$$aSeifert, Patric$$b9
000874614 7001_ $$0P:(DE-HGF)0$$aVernier, Jean-Paul$$b10
000874614 773__ $$0PERI:(DE-600)2505596-3$$a10.5194/amt-13-1243-2020$$gVol. 13, no. 3, p. 1243 - 1271$$n3$$p1243 - 1271$$tAtmospheric measurement techniques$$v13$$x1867-8548$$y2020
000874614 8564_ $$uhttps://juser.fz-juelich.de/record/874614/files/invoice_Helmholtz-PUC-2020-25.pdf
000874614 8564_ $$uhttps://juser.fz-juelich.de/record/874614/files/amt-13-1243-2020.pdf$$yOpenAccess
000874614 8564_ $$uhttps://juser.fz-juelich.de/record/874614/files/amt-13-1243-2020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000874614 8564_ $$uhttps://juser.fz-juelich.de/record/874614/files/invoice_Helmholtz-PUC-2020-25.pdf?subformat=pdfa$$xpdfa
000874614 8767_ $$8Helmholtz-PUC-2020-25$$92020-04-02$$d2020-04-03$$eAPC$$jZahlung erfolgt$$pamt-2019-283$$zBelegnr. 1200151871
000874614 909CO $$ooai:juser.fz-juelich.de:874614$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000874614 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129121$$aForschungszentrum Jülich$$b0$$kFZJ
000874614 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b1$$kFZJ
000874614 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129154$$aForschungszentrum Jülich$$b2$$kFZJ
000874614 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129170$$aForschungszentrum Jülich$$b4$$kFZJ
000874614 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b6$$kFZJ
000874614 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b7$$kFZJ
000874614 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139013$$aForschungszentrum Jülich$$b8$$kFZJ
000874614 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000874614 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x1
000874614 9141_ $$y2020
000874614 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000874614 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000874614 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000874614 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS MEAS TECH : 2017
000874614 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000874614 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000874614 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000874614 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000874614 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000874614 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000874614 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000874614 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000874614 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000874614 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000874614 920__ $$lyes
000874614 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000874614 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x1
000874614 9801_ $$aAPC
000874614 9801_ $$aFullTexts
000874614 980__ $$ajournal
000874614 980__ $$aVDB
000874614 980__ $$aI:(DE-Juel1)JSC-20090406
000874614 980__ $$aI:(DE-Juel1)IEK-7-20101013
000874614 980__ $$aAPC
000874614 980__ $$aUNRESTRICTED
000874614 981__ $$aI:(DE-Juel1)ICE-4-20101013